
AUGUST 1995 Delphi INFORMANT ▲ 1

ON THE COVER

9 Creating MDI Apps — Jonathan Matcho
In the Microsoft Windows development environment, there
are two ways you can go with the basic interface of any
application you create: MDI or SDI. This month, Mr
Matcho gets us started with the basics of the Multiple
Document Interface.

14 A Topical Search — Robert Palomo
Now, more than ever, any major Windows applications fea-
tures an on-line, hypertext, context-sensitive help system
based on the Windows help engine. Mr Palomo introduces
us to the basics and then gets to the nitty gritty of imple-
menting such a system in Delphi.

20 Initialization Rites — Douglas Horn
There’s an accepted Windows standard for storing infor-
mation from one session of an application to another: the
humble .INI file. Delphi makes manipulating these initial-
ization files particularly straightforward by encapsulating
them with its TINIFile object, as Mr Horn explains.

FEATURES

25 OP Basics — Charles Calvert
If you come from a non-Pascal background, you may have
already noticed that the Object Pascal string type is unlike
its C/C++ cousin. However, Pascal does offer null-termi-
nated strings as well. Mr Calvert makes it all plain in this
first of a three-part series on strings.

29 DBNavigator — Cary Jensen, Ph.D.
In this month’s DBNavigator, Mr Jensen kicks off a
two-part series on data validation. The focus this
month is on checking non-table data, featuring a
try...except block and a discussion of field-level ver-
sus record-level validation.

34 Sights and Sounds — David Faulkner
Mr Faulkner adds a little color to the issue with his “color
triangle”. Make that, lots of color and a good measure of
algebra to boot! In any case, it’s a fine example of
Delphi’s screen-painting capabilities, compiler options,
uses tricks, and more.

August 1995 - Volume 1, Number 4

Application Development
Implementing MDI, On-Line Help,

and .INI Files

Cover Art By: Victor Kongkadee

40 On-Line — Rand McKinney
Remarkably, a wide assortment of Delphi-centric World-
Wide Web sites have already stepped onto the Internet
stage. From the official Borland sites to “Delphi Hacker’s
Corner”, Mr McKinney picks his favorites and offers an
HTML to make it all easy.

43 At Your Fingertips — David Rippy
Our popular bi-monthly tips column is back. This
month, Mr Rippy shows us how to implement a “hot
regions” user interface, a poor-man’s glossary system,
and a quick-and-dirty way to copy a record from one
table to another.

REVIEWS
45 InfoPower

Product review by Joseph Fung
50 Delphi Nuts & Bolts

Book review by Larry Clark
50 Delphi Unleashed

Book review by Cary Jensen, Ph.D.
51 Delphi Programming EXplorer

Book review by Tim Feldman

DEPARTMENTS
2 Editorial/Letters
4 Delphi Tools
7 Newsline

You gotta take it down to the drums. It’s the only way you’re gonna get it right.
— Iggy Pop
T he obscure Metallic KO is a live recording of the apocalyptic final concert of Iggy Pop and the Stooges.
It captures an odd moment in music history and is remarkable in several respects, not the least of
which is that it was ever released. It records the Stooges playing abominably in front of an overtly

hostile audience. You can even hear bottles breaking as they hit the stage. At one point the band is so out
of sync that Iggy Pop shouts over the cacophony and orders them to “take it down to the drums.” Slowly,
agonizingly, in front of a hooting crowd, the Stooges comply. Apocalyptic — yes. Good music — hardly.
In this business, the readers set the
tempo and I have no intention of letting us
get out of sync, so I decided to take it
“down to the drums” from the get-go. In
June I asked you to let us know how we’re
doing and what types of articles you’d like
to see. And you did.

I was greatly relieved to see from your
letters that we’re on track so far. In fact
the response has been overwhelmingly
positive — and for that I thank you. You
also did a fine job of burying us in article
requests, and they are also very much
appreciated. All have been duly noted and
a list has been made available to all cur-
rent and prospective DI writers.

Taking your messages as a whole, sever-
al points came through loud and clear.
For one, you do want an editorial section
with letters to the editor, so here you are.
I’ve attempted to capture most of the
other major points with representative
letters, so I’m going to let you do the rest
of the talking.

I’d like to avoid the sort of humiliating,
public course correction that the Stooges
suffered in the early 70’s (oh yeah — long
before punk), so you can bet I’ll be listen-
ing. Let’s keep in sync.

— Jerry Coffey, Editor-in-Chief
CompuServe ID: 70304,3633
AUGUST 1995
Love the mag
Hi Jerry: The last three issues of

Delphi Informant have been fabulous.
I read a ton of magazines and this one
is tops. It is just right in length and
wonderful in layout.

How about an article that carefully
dissects a simple (not too simple)
object? An article that hits on the con-
structor, destructor, and all the parts
of a custom component would be very
nice. ... I prefer reading about the
basics of objects.

This is virgin territory for a lot of us
out here. And keep hitting the data-
base stuff a lot too.

Congrats on a fine publication. Well
worth the money. — Chip Mayer

Thank you Chip! Although we want to hear
all comments — positive and negative —
this is the kind of message that keeps us
going. Feel free to send them any time. <g>
And don’t worry — I won’t run a couple of
pages of “you guys are great” messages. But
keep in mind that I can if I need to. <g>
Suggestions, suggestions, suggestions
Jerry. A few comments on your new

mag as requested. ... (1) Yes, I do like
the editorial page. A useful communi-
cation that makes the magazine seem
more complete. Nice to hear from the
busy Editor-in-Chief. (2) I’m a begin-
ner, but can already follow (and near-
ly understand) most of your articles.
This does not mean that the level is
not right — it is. A good mix of intro-
ductory and more advanced in fact.
... (3) I like the little tips in “At Your
Fingertips”. Please do keep little
snippets like the “incremental search
field”. It reminds me to not waste
money on some third-party product
that offers such simple stuff!
<smile> I know that lots of powerful
stuff is just a matter of reading the
manuals and practicing and the tips
help with this. ... (4) Third-party
product and book reviews are very
useful. Yes — I’ll buy good-value
third-party components. I’ve also got
the Dummies book and it is very good
as you said (lots of tips again). Still
waiting to buy the Sams Delphi
Developer’s Guide and Waite Groups’
Borland Delphi How-To. ... Maybe
you have some reviews coming on
these before I buy? (5) Don’t waste
too much space on VB! Give those
fellas a short while to convert, but
don’t waste valuable space when it’s
Delphi stuff we want. (6) Object
Pascal basic-to-intermediate level
articles would be helpful for many. ...

Thanks for an interesting and useful
magazine. Looking forward to my next
one. — Richard Entwistle, Hong Kong
Delphi INFORMANT ▲ 2

Editorial
This pithy message from Mr Entwistle is
fairly typical. Most of you have responded
with such thoughtful critiques. Thank you!
Thank you! Thank you! Regarding the book
reviews — we plan to review every Delphi
book as soon as it is available. The two you
mention aren’t out yet, but three that are
available are reviewed in this issue.
Not too much database please
First, I like the editorial ... How you

are doing? IMHO, wonderfully! It is
an information-packed magazine with
something for everyone, and don’t
change that! ... Topic spread: Pretty
good, considering you have only pub-
lished two issues as of yet. Keep it up!
Object Pascal: Like many coming from
a strong Visual Basic background ... I
don’t know everything in the Object
Pascal language itself yet. Thus, the
more of it, the better!

Databases: Eeeiiiii! Everybody seems
to assume that VB programmers pro-
gram databases! As a game/edutain-
ment author, I take umbrage at that. ...
There are a lot of database program-
mers, so I’m not suggesting that you
remove those articles from the maga-
zine, but keep it under control if you
don’t want to lose the general program-
ming contingent. ... More graphics-ori-
ented articles would be nice.

... I noticed something missing from
your magazine; a letters department ...
it would be nice to see what other peo-
ple think of Delphi Informant.

In general, I really like the maga-
zine, and will most likely subscribe to
it soon if this quality continues! Keep
up the great work! — Michael

Thanks Michael. And don’t worry — we
won’t let the magazine be dominated by
any one programming area. There’s a cool
graphics article beginning on page 34.
BTW, have you subscribed yet? <g>
Give us more!
Mr. Coffey, you asked for feedback.

Well, here is mine. I just received my
first issue (V1N2) of Delphi Informant.
In short, I loved it. In fact, I couldn’t get
AUGUST 1995
enough of it. Could you please get a little
more between the covers? That’s the
only negative thing I can say about DI.
DI seems to have a pretty good balance
of material. Anyway, thanks for a great
magazine. I’ve already cleared a spot on
the bookshelf for future volumes.

By the way, have you noticed how
many WWW sites are forming
around Delphi? Amazing! Do you
think DI will talk about the offerings
of these sites? — bt
One thing virtually everyone agreed on was
that DI could be a bit bigger. All of you
should be happy to note that this month’s
issue is 16 pages longer (that’s one “signa-
ture” in the biz). It certainly makes me
happier. From an editorial stand-point it
allows us to offer broader coverage. Our
WWW coverage begins on page 40.
Not technical enough
I just read the first issue of the DI. I

was very excited to read some articles
with deep insight into Delphi and the
VCL ... I think, DI has a good chance
to become a major Delphi developers
information magazine, but I would
recommend that you offer articles that
are more technical. ... One could write
about the architecture and implemen-
tation of the VCL database compo-
nents ... OLE programming with
Delphi ... a dockable toolbar ... Mail-
access components ... There are lots of
complicated things to write about.

This criticism should not be taken as a
very strong one. I can imagine it is a lot
of work to start a new magazine. It
should be taken as a friendly hint ...
what a Delphi developer with some
practice would like to read.

Thanks for your work on Delphi
Informant — Christian Abeln

Are there ever lots of technical things to write
about! And thank you Christian for the
“friendly hint” to supply more advanced
articles. (There were a couple of similar let-
ters that weren’t as kind.) However, there were
also many letters exhorting us not to become
too technical and leave those learning Delphi
behind (one of them follows). We fully intend
to keep a good balance by offering articles
for programmers at all levels of expertise.
Too technical
Dear Sir,

... I am frustrated with some of the
articles provided in the first two issues
of DI. I am brand new to Delphi, Pascal,
and OOP. My background is DOS and
BASIC, so Delphi is quite a big under-
taking for me. ... My subscription to DI
is part of this process.

In particular, I find that there are
some assumptions made on the part of
some writers that their readers know
certain terms or lingo. For example, in
issue one, you had an article by Dan
Ehrmann called “Data-Aware Delphi”.
It dealt with modifying a query compo-
nent via a tabbed interface. ... even
though this article is identified for
“Beginner/Intermediate”, nowhere could
I find information on what a table is! ...
Questions arose in my mind: 1) What is
a table? 2) How are tables created? Do
they float down out of the sky? 3) How
does one add data to a table? 4) Is a
.DBF file a table? ... then the author
throws the term query around as if
everyone knew what a query was. ...

Thank you for your time.
— Philip Kapusta

Too technical, not technical enough —
these are the kinds of things that keep edi-
tors awake nights. I’m afraid there’s little I
can do except try to steer down the middle.
As long as these letters are in balance, we’re
on course — and your feedback is critical.

Let me close with a final question. Philip
refers to a practice we used only in the pre-
miere issue of DI (which is sold out BTW —
thank you very much), that of labeling arti-
cles as Beginner, Intermediate, etc. In prac-
tice, I found this distinction a highly subjec-
tive one and simply quit doing it. A number
of you have asked for its return however, so
please let me know how you feel. I can
always bring it back if you find it
useful.

Thanks again for all your
messages. — J.C.
Delphi INFORMANT ▲ 3

AUGUST 1995

New Delphi Books

Teach Yourself Delphi in 21 Days
Andrew J. Wozniewicx

& Namir Shammas
Sams Publishing

ISBN: 0-672-30470-8
Teach Yourself uses example and

full code listings to explain how to
combine visual programming with

Object Pascal. It covers DLLs,
DDE, and OLE components,
exception handling, program

architecture, and more.
Price: US$29.99 (912 pages)

Phone: (800) 488-5233

Borland Delphi How-To
Gary Frerking, Wayne Niddery,

& Nathan Wallace
Waite Group Press

ISBN: 1-57169-019-0
Borland Delphi How-To presents

over 100 programming problems
and their solutions. It covers

graphics, document, multimedia,
database, OLE, and DDE issues.
This book ships with a CD-ROM
containing resources, bitmaps,

and custom components.
Price: US$39.95

(700 pages, CD-ROM)
Phone: (800) 368-9369

Delphi
T O O L S

New Products
and Solutions
MKS’ Source Integrity Released

Mortice Kern Systems of

Waterloo, ON has released a
new version of MKS Source
Integrity (formerly MKS
RCS). It brings users a new
and complete configuration
management system that
encourages multi-user develop-
ment. Version 7.1 fits into
development environments,
and will include Visual Merge,
enhanced reporting capabili-
ties, event triggers, a new con-
figuration language, integra-
tion into Visual C++ and
Borland C++, and other pro-
ject management facilities.

MKS Source Integrity is the
only PC version control system
offering an interactive, visual
merge facility. Developers will
save time by merging files with
a mouse click.

Source Integrity automates
your configuration manage-
ment system even more with
event triggers. Time is saved
by configuring particular
events to automatically trigger
a second event. For example,
MKS Source Integrity can be
configured to automatically
mail a confirmation message
to the project leader each time
a team member checks in a
new file.

In addition, Source
Integrity features a fully-cus-
Delphi Btrieve Data Flow

Application

ODBC Interface

Btrieve

Borland Database Engine

Delphi Database Components
tomizable toolbar and easy-
to-use configuration.

Price: US$449, upgrade for current users
US$149.

Contact: MKS 185 Colombia Street
West, Waterloo, ON, Canada, N2L 5Z5

Phone: (519) 884-2251

Fax: (519) 884-8861
Access Btrieve Data with Titan for Delphi
Titan for Delphi Data Flow

Application

Btrieve

Delphi Database Components

Titan for Delphi
High Performance Engine
AmiSys Inc., of Concord,
CA has released Titan for
Delphi, a Btrieve interface
for Delphi developers. Titan
is a drop-in replacement for
the IDAPI used in Delphi. It
allows Delphi users to access
Btrieve data files without
using the ODBC layer pro-
vided through IDAPI. Also,
Titan allows the developer to
use all the standard Delphi
data-aware components, such
as grid, edit, checkbox, and
list box controls without
modifications.

Titan doesn’t require any
IDAPI dynamic link library
(DLL) files to be installed or
configured on the target sys-
tem. It supports multiple
databases through the use of
Btrieve standard Data Defi-
nition files (DDFs).

Titan supports all the
Delphi visual development
tools such as the Database
Form Expert, Field Editor,
and Master/Detail relation-
ships between tables.

In the future, AmiSys plans
to release a TQuery compo-
nent, integrate calls to the
IDAPI, and enable Titan to
access non-Borland databases.
Price: Titan for Delphi Runtime Version,
US$295.

Contact: AmiSys Incorporated, 1390
Willow Pass Road, Suite 930, Concord,
CA 94520-5253

Phone: (510) 671-2103

Fax: (510) 671-2104
Delphi INFORMANT ▲ 4

AUGUST 1995

Delphi Training

UDP Solutions Center, a
Borland training member, is offer-
ing an advanced course in Delphi
Client/Server application devel-

opment. Borland’s official course
material is taught at an accelerat-
ed pace, and concludes with sup-

plemental materials relating to
client/server applications, such as
an exercise building an applica-
tion using an MS SQL server in a

true client/server environment.

UDP will be offering client/server
application development using
Delphi (5 days) US$1875.00

on Aug. 28 - Sept. 1 and
Sept. 11-15. For more

information and registration
materials, contact:

Christopher Simmons at
(503) 690-6877 or e-mail

chriss@udp.com

Delphi
T O O L S

New Products
and Solutions
Delphi Component Creates Paradox for Windows Reports

Kirsch & Partners Limited

of Markham, ON has
announced the release of
PdoxRept, a reporting compo-
nent for Delphi.

With PdoxRept, Delphi
developers can create reports
using Paradox for Windows,
and deliver executables to
users along with the Paradox
report files (RDLs or RSLs).
PdoxRept will print without
displaying splash screens or
start-time requests. And with
RDLs, developers can be sure
the reports won’t be acciden-
tally modified.

PdoxRept offers approximately
24 properties, giving developers
full control over printing,
including the number of copies,
page orientation, overflow con-
trol, the base table for reporting,
aliases, page numbering and off-
sets, and previewing.

PdoxRept ships with the lat-
est run-time version of
Paradox for Windows, so users
do not need to own or learn
Paradox. The license agree-
ment allows developers to dis-
tribute executable code with-
out additional license or fee.

Price: Introductory price, US$99.95
(regularly US$149.95).

Contact: Kirsch & Partners Limited,
3105 Markham Industrial Park, Markham,
ON, Canada L3R 6G4

Phone: (416) 967-1660
Syware Announces Dr. DeeBee Tools

Syware Inc., of Cambridge,

MA has announced the release
of Dr. DeeBee Tools, a suite of
utilities for ODBC developers
and product support organiza-
tions to monitor the operation
of ODBC-enabled applica-
tions and drivers.

Dr. DeeBee Tools provide
insight into the performance
and inner workings of
ODBC. It includes a suite of
seven utilities: Dr. DeeBee
Check (semantically checks
ODBC applications at run-
time), Dr. DeeBee Peek
(records ODBC calls made
by an application), Dr.
DeeBee Timer (counts the
ODBC calls an application
makes and their duration),
Dr. DeeBee Test (runs regres-
sion tests on ODBC drivers),
Dr. DeeBee Spy (a version of
Dr. DeeBee Peek for product
support organizations that
can be re-distributed), Dr.
DeeBee Replay (replays logs
generated by Dr. DeeBee
Spy), and Dr. DeeBee Info
(displays description and
characteristics of a driver).

ODBC application and dri-
ver writers, along with their
customer support organiza-
tions, use Dr. DeeBee to mon-
itor, optimize, and test ODBC
products and projects.

Dr. DeeBee Tools reports on
the ODBC performance of an
application. It helps developers
determine how the application
is using ODBC, and if the
application is using ODBC
properly. ODBC driver writers
use Dr. DeeBee Tools to deter-
mine the use and performance
of their driver, and to run tests
against the driver. Support
organizations for ODBC prod-
ucts use Dr. DeeBee Tools to
determine their customers’
ODBC problems and to pin-
point whether the problem is
in the application or driver.

Dr. DeeBee Tools work with
all ODBC applications, includ-
ing those created by Microsoft’s
Access, Visual Basic, and
Borland’s Paradox, Delphi, and
C/C++. Dr. DeeBee Tools are
compatible with both ODBC
1.0 and ODBC 2.0.

Price: US$399 for the Super Bundle
(all seven tools); or US$199 for the
Starter Bundle (Info, Peek, and Timer).
Corporate site license and reseller prices
are available.

Contact: Syware Inc., P.O. Box 91
Kendall, Cambridge, MA 02142

Phone: (617) 497-1376

Fax: (617) 497-8729
Delphi INFORMANT ▲ 5

AUGUST 1995

EMS Professional Shareware has
released Professional Shareware

Libraries, adding three new
libraries for Delphi, Clarion, and
NT, featuring over 100 tools for

developers and consultants.
Each library includes a search

program allowing users to search
for a utility by product name,

producer, type, release date, or
with a free text search across all

information in the database.
The first library purchased costs
US$59.50, and any additional
libraries are US$25. For more

information contact EMS at
(301) 924-3594, or e-mail

ems@wdn.com.

Delphi
T O O L S

New Products
and Solutions
MicroHelp Releases SpellPro 2 & Thesaurus

MicroHelp, Inc. of Marietta,

GA has recently released
SpellPro 2 & Thesaurus, an
upgrade to its SpellPro tool
that enables programmers to
build spell check functions
into visual applications.
SpellPro 2 & Thesaurus
includes a thesaurus that uses
a dictionary of more than
50,000 synonyms. The pack-
age contains DLL, VBX, and
16/32-bit OLE controls.

SpellPro 2 now supports mul-
tiple custom dictionaries while
its new dictionary utility gives
more than 50 percent compres-
sion and is three times faster
when exporting a dictionary to
a text file. The common-word
cache has been increased from
25 to 1024 words and includes
user-definable language settings.
Additionally, SpellPro’s preload
function decreases start-up time.

SpellPro 2 also features built-
in dialog boxes to reduce cod-
ing time, AutoLinkHwnd
functionality that allows appli-
cations to be automatically
linked to the DLL, and multi-
ple discardable code segments
that reduce the amount of
memory needed.

SpellPro 2 & Thesaurus
can check 60,000+ words per
minute using a Pentium/66
processor. It also features
utilities for building individ-
ual dictionary and thesaurus
files, and medical and legal
dictionaries. There are no
run-time royalties for distrib-
uted applications.

Price: US$129

Contact: MicroHelp Inc., 4211 J.V.L.
Industrial Park Drive, NE, Marietta, GA
30066

Phone: (800) 922-3383, or
(404) 516-0899

Fax: (404) 516-1099

BBS: (404) 516-1497
ProtoView Releases DataTable

ProtoView Development

Corp. of Cranbury, NJ has
released DataTable version
2.7 for Delphi. DataTable is
a Windows grid control that
gives applications the look
and feel of a professional
spreadsheet. It provides visu-
al access to database tables,
and allows Delphi developers
to create powerful database
manipulation applications
without coding.

DataTable supports over 32
different data types, including
Microsoft SQL Server, Sybase
SQL server and more. The
Delphi developer has com-
plete control of the DataTable
through design-time Object
Inspector settings, API, and
numerous notification codes.

DataTable features design
time visual setting via the
Delphi Object Inspector,
Delphi Data Sources support,
cell formatting, editing within
individual cells, row and col-
umn selection, and horizontal
and vertical grid lines.

It also includes three-dimen-
sional row and column styles,
column re-sizing, hidden
columns, support for database
null values, multi-line column
and row labels, automatic
insertion of empty rows,
multi-line data entry in a cell,
and advanced methods and
notifications. With DataTable,
developers can set fonts and
colors for row and column
labels, sort with up to three
sort keys, and display cells as
check, list, or combo boxes.

Price: US$149; source code, US$495.
Applications created using the DataTable
may be distributed royalty free.

Contact: ProtoView Development
Corporation, 2540 Route 130, Cranbury,
NJ 08512

Phone: (800) 231-8588 or
(609) 655-5000

Fax: (609) 655-5353
Delphi INFORMANT ▲ 6

AUGUST 1995

Borland International Inc.’s
Sixth Annual Developers

Conference, to be held August
6-9 in San Diego, CA, will focus
on helping developers make a
smooth transition to Windows

95. The conference is expected
to attract over a thousand devel-
opers from around the world and

will feature over 200 sessions.
Registration for a single attendee

is US$1,195, and US$1,145
each for three or more people

from the same company.
For more information or to

register, call (800) 350-4244 or
(805) 495-7800 (international).

Additional information about
Borland Developers Conference

is also available on Borland
Online, Borland’s World Wide

Web site at
http://www.borland.com.

PC Database Summit, a
national conference for man-
agers, system analysts, and

developers of database applica-
tions on PCs, is scheduled for

August 20-22, 1995 in Seattle,
WA. The conference will include
seminars and workshops, two

database competitions, an exhi-
bition hall, and a computer lab.

Summit ’95 will be held at the
Sea-Tac Red Lion Hotel near the

Seattle Airport and costs
US$395. Groups who purchase

three tickets will receive an
additional free pass. For more

information, or to register,
call (800) 497-7060.

News
L I N E

Augus t 1995
Visual Components Made Delphi Ready

Lenexa, KS — Visual
Components, Inc. has
announced the release of
Delphi-specific declaration
fields for Formula One, First
Impression, and VisualSpeller.
These products are now ship-
ping with current builds of
each product.

The declaration files make it
easier for developers using
Delphi to add high-quality
spreadsheet, charting, and
spell checking functionality to
Delphi applications.

According to the company,
the declaration files make it
easier for Delphi developers
to access the core DLL of
each product. This is impor-
tant because all the function-
ality of Formula One, First
Impression, and
VisualSpeller is held in the
core DLL. By using the dec-
laration files, Delphi devel-
opers can easily access and
use this functionality.

For more information visit
Visual Components on
CompuServe (GO VIS-
TOOLS) or contact them at
(913) 599-6500.
Borland Conference Europe 96: A Call for Papers

Portsmouth, UK — Desktop
Associates Ltd. and Dunstan
Thomas Ltd. are accepting
papers for the Borland
Conference Europe 96, sched-
uled for April 28 - 30, 1996
in London.
There are three types of pre-

sentations: Pre-Conference
Tutorials, Technical
Presentations, and Case Studies.
The technical sessions are

organized into three major
tracks: Delphi; Paradox and
Visual dBASE; and C++,
Decision Support Tools,
InterBase, and General
Interest. Each track has a num-
ber of threads, however, they
do not form the definitive list
of topics that may be accepted.

The Delphi track will
include: Solutions,
Programming, Tools and
Techniques, Methodologies,
Client Server, and Pre-
Conference Tutorials.

All overseas speakers will
have their airfare and travel
paid, and speakers will have
their accommodations
arranged and paid.
To apply as a speaker, send a

personal profile or “bio” for
publishing in conference mate-
rials, a session title (under 100
characters), a short description
(under 30 words) of your pre-
sentation, and an abstract of
you presentation (under 1000
words) in Microsoft Word for
Windows or ASCII format.
All materials must be submitted
no later than September 1, 1995.

Speakers will be selected
and required to submit a
written version of each pre-
sentation, code samples, and
presentation slides.

For submissions please con-
tact Chris Read at Dunstan
Thomas Ltd. by phone: +44
(0)1705 822254, fax: +44
(0)1705 8223999, or e-mail:
cread@dt.mhs.compuserve.com
or 100014,2273.

Or write to: Chris Read,
Dunstan Thomas Ltd., The
Old Treasury, 1 St. Paul’s
Road, Portsmouth, PO5 4JU,
UK. Please mark correspon-
dence BCE 96.
Borland Previews Delphi32

Scotts Valley, CA — Borland
International will be showing
the upcoming 32-bit version
of Delphi at the Sixth Annual
Borland Developers
Conference this month. The
version has a number of new
features such as forward com-
patibility, and OCX and
Windows NT support.

With Delphi32, 16-bit
Delphi applications can be
converted to 32-bit applica-
tions with a simple recompile.
The only exception would be
if the 16-bit program uses a
Windows API call that has
been modified between
Windows 3.11 and Windows
95 — an unlikely occurrence.

Delphi32 will have complete
OCX support, including a new
page on the Component Palette
with sample OCXes. It will sup-
port the entire Windows 95
API (although some Windows
95 API functions will not be
“wrapped”), and encapsulate all
Windows 95 user-interface ele-
ments. Delphi32 will also meet
all of Microsoft’s Windows 95
logo requirements. For example,
Delphi32 will be a fully-func-
tional Windows NT product.

The back-end of the
Delphi32 compiler engine
will be shared with the
Windows 95 version of
Borland C++. This enables
users to optionally create C++
.OBJ files instead of Delphi’s
native .DCU files. The com-
piler will be faster and take
advantage of the Windows 95
32-bit flat memory model.
All products bundled with
Delphi (Borland Database
Engine [BDE], Database
Desktop, and ReportSmith)
will also be 32-bit versions.

Delphi32 and Delphi32
Client/Server will begin ship-
ping within 90 days of
Windows 95. Due to the
uncertainty of Windows 95
acceptance, Borland will con-
tinue to ship the 16-bit version
of Delphi.
Delphi INFORMANT ▲ 7

AUGUST 1995

ICG CompuServe Forum
Structure

Message Sections:

Library Sections:

Title Descrip
1 General - Cust Srv Subscription in
2 New Paradox Uploads New Paradox In
3 New Delphi Uploads New Delphi Inf
5 Pdox DOS 4.x Paradox for DO
6 Pdox DOS Demo/Share Paradox for DO
8 Pdox Win 4.x PW 4.x magazi
9 Pdox Win 5.x PW 5.x magazi

11 Pdox Win Demo/Share PW tools/demo
12 Delphi 1.x Delphi Informa
14 Delphi Demo/Share Delphi tools/de
17 General Windows General Window
19 Ltr to Ed/MacGruder Upload private
20 Back Issues Info Back Issue cata
21 Editorial Info Editorial inform

and editorial ca
22 Jobs/Help Wanted Employment op
23 ICG News Informant Com

Title Description
1 Customer Service Customer service question
2 Pdox DOS (ALL) Paradox for DOS discussio
3 Pdox Win Form/Rpts PW form or report discussi
4 Pdox Win Queries PW query discussions
5 Pdox Win ObjectPAL PW ObjectPAL discussions
6 Pdox Win Network PW networks discussions
7 Pdox Win Wish List PW wish list discussions
8 Delphi Database Delphi database discussio
9 Delphi Win API Delphi Windows API discu

10 Delphi Components Delphi components discus
11 Delphi Obj Pascal Delphi Object Pascal discu
12 Delphi Wish List Delphi wish list discussion
22 Jobs/Help Wanted Help wanted/job opportun
23 Database Industry Database industry discussi

News
L I N E

Augus t 1995
Delphi Seminars Now Available Worldwide

Scotts Valley, CA — Borland
International Inc.’s Delphi for
Windows and Delphi
Client/Server application devel-
opment tools are rapidly gaining
worldwide attention following
numerous awards from industry
publications. The mounting
interest in Delphi has led
Softbite International, DSW
Group, and Zachary Software to
tion
formation
formant code samples

ormant code samples, etc.
S magazine code samples
S demo/shareware programs
ne code samples
ne code samples
/shareware programs
nt code samples
mo/shareware programs
s utility files

files to Editorial Dept./MacGruder
log file
ation downloads, including writer style guides
lendars
portunities

munications Group news
offer worldwide seminar series
for Delphi developers.

According to Borland, the
Delphi series will put developers
on the fast track for building the
next generation of Windows
and client/server applications.
With the forthcoming
Windows 95 version of Delphi,
attendees will learn how they
can easily upgrade their applica-
tions to full 32-bit performance.
Beginning this summer,

Softbite International, DSW
Group, and Zachary Software
will collectively reach more
than 50 cities worldwide to
offer developers training on
using Delphi to build stand-
alone, LAN, and client/server
applications. Each company
will provide one- and two-day
seminars beginning in July and
running throughout the year.

For information on seminar
locations and dates, log on to
Borland’s Internet World Wide
Web site at htpp://www.bor-
land.com. Or contact Softbite
International (708) 833-0006;
DSW Group (800) OK-DEL-
PHI; or Zachary Software
(800) GO-DELPHI.
Informant Forum Opens on CompuServe

Elk Grove, CA — Informant
Communications Group, Inc.
(ICG) launched its Informant
Forum on CompuServe in late
June. The forum was created
to foster the exchange of tech-
nical information among

developers using
Borland’s Paradox and
Delphi, and to give
Informant readers an
easy way to reach ICG.

“Our forum has
already proven to be a
great way to reach our
readers,” said Mark
Wiseman, Operations
Manager for ICG.
“We’re able to respond
to readers’ questions
within minutes.” If you
have a question about
your subscription, would
like to subscribe, or need

s
ns
ons

ns
ssions
sions
ssions
s
ities
ons
other general company infor-
mation, simply post a message
in the customer service area.

For technical information,
areas have been designated for
various topics. Informant
authors, as well as other
industry experts, will be surf-
ing Informant Forum to lend
their expertise.

Library 19 is dedicated to
Peter F. MacGruder fans.
Upload your most Mac-worthy
news, and if he uses your
material in a column, you’ll
receive an Informant T-shirt or
baseball cap.

Informant Forum also has
several libraries for Paradox
and Delphi downloadables.
View the Delphi custom
components, utilities, and
other files available. For
prospective writers, the
Paradox Informant and
Delphi Informant Writer’s
Style Guides and Editorial
Calendars are available for
download in Library 21
(Editorial Information).

To visit the Informant
Forum type “GO ICGFO-
RUM” at any CompuServe
GO prompt. If you want to
join CompuServe, you can
obtain a CompuServe starter
kit including a US$15 usage
credit by calling toll-free in
the United States (800) 524-
3388 and asking for REP
number 547.
ICG Publishes New
Delphi Power Tools
Catalog; Readies
Paradox and C++

Elk Grove, CA — Informant
Communications Group, Inc.
(ICG) has released a new
Delphi Power Tools catalog.
In addition, ICG is accepting
advertising for the upcoming
Paradox and C++ Power Tools
catalogs. Each catalog features
third-party add-in products
and services that complement
Delphi, Paradox for Windows
(PW), or C++, respectively.
These catalogs are indepen-
dently produced by ICG and
inserted into each copy of
Delphi, PW, or C++.

The next edition of Delphi
Power Tools is already under-
way. For advertising informa-
tion, phone Lynn Beaudoin at
(916) 686-6610, ext. 17 (e-
mail: 74764,1205) or Sheri
Birkmaier at (916) 686-6610,
ext. 21 (e-mail:
76072,1720).
Delphi INFORMANT ▲ 8

AUGUST 1995

Creating MDI Apps
Multi-Form Delphi Applications: Part I

On the Cover
Delphi / Object Pascal

By Jonathan Matcho
W hile a form alone can certainly be considered an application, appli-
cations typically consist of several forms. When developing a multi-
form Windows application, you can choose from two major ways of

presenting the overall application interface: the Multiple Document Interface
(MDI), or Single Document Interface (SDI).

Each style presents an application to the user in a different way. MDI applications have been
thought of as “proper” Windows style. However, SDI applications are becoming more popular —
Delphi is an excellent example.

In this first part of a two-part series, we’ll focus on MDI application design. Specifically, we’ll discuss:
learning the basics of setting up an MDI application, designing code to control MDI applications,
learning about MDI-related properties and methods, and developing an example MDI application.
Creating MDI Applications
Delphi allows you to create Windows applications that support the
MDI standard. Examples of MDI applications are Windows Program
Manager, File Manager, Microsoft Word, and most Windows text
editors that support loading multiple files simultaneously.

MDI-compliant applications have an MDI parent window with a
client area that displays one or more MDI child windows (or chil-
dren). MDI child windows are confined to the client area, meaning
that child windows can’t extend outside the parent window’s border.

MDI child windows can be minimized, maximized, or sized to fit
anywhere within the client area. Typical MDI capabilities include
tiling and cascading MDI child windows, as well as arranging the
icons of minimized child windows. The MDI parent window con-
tains the application’s master menu, used to manipulate the MDI
child windows. The child windows do not have menus.
Setting Up MDI Parent and Child Forms
MDI applications consist of two or more forms. A single-form MDI
application is contradictory and should be developed as an SDI appli-
cation. All MDI applications must have a parent window with at least
a single MDI child window. To implement this relationship in
Delphi, you need to manage at least two form files in your project.
Delphi INFORMANT ▲ 9

Figure 1: The Browse Gallery dialog box for projects is displayed when
the Gallery: Use on New Project option has been selected at the
Environment Options dialog box. The MDI Application template sup-
plied with Delphi will get you off to a great start.

Figure 2: The
Delphi Project
Manager. A project
can contain many
forms, but only two
types are needed
for an MDI
application.

On The Cover
The easiest way to create an MDI application is to use Delphi’s
own MDI Application project template. To better understand the
process, however, we’ll go through the steps of building an MDI
project from the ground up. A project is a collection of related
forms and units that work together to make up an application.

Start with a new project by selecting File | New Project from the
menu. If you have the Gallery option on for new projects, you’re
prompted with the Browse Gallery dialog box shown in Figure 1.
If the Browse Gallery dialog box appears, select the Blank project
template and press the OK button.

Make the default form an MDI parent form by setting its
FormStyle property to fsMDIForm. (We’ll discuss this more
below.) Name the MDI parent form frmMDIParent.

Add another form to the project (it will be used for MDI chil-
dren) by selecting File | New Form. This causes a new form and
unit to be added to your project. If you have the Gallery option
on for new forms, you are again prompted with the Browse
Gallery dialog box — this time for form templates. Select the
Blank form template and click the OK button.

Using the Object Inspector, set its FormStyle property to
fsMDIChild, name it frmMDIChild and give it a caption, such as
“Child”. The name is used as the basis for the form’s class name, and
the caption is the text that’s placed in the title bar. (Tip: Giving your
form objects, and unit and project files meaningful names makes
them easier to work with and document.)

Once this is done, a new unit appears in the Project Manager. Bring
the Project Manager on-screen by selecting View | Project
Manager. Figure 2 shows the Project Manager window with two
form types defined. Note the term form types. In MDI terms, a
form’s type indicates whether it is an MDI parent — fsMDIParent,
or child — fsMDIChild.

At run-time, multiple instances of these new form classes can
be created and are limited only by system resources. The term
classes is used here, since when adding a new form to a project,
we are essentially sub-classing the basic form class, TForm.
This is shown by this code from a unit’s type declaration:

type
TfrmChild = class(TForm)

...
Referencing MDI Child Windows
There are many properties and methods that enable you to control
MDI child windows within your application. The following exam-
ple of an imaginary company illustrates several techniques for con-
trolling MDI child windows.

Suppose you have a user request from Bob, the head of the
human resource department at a company called XYZ. Bob has
just requested that a function be added to XYZ’s Bonus
Calculation system to enable creation of additional bonus calcu-
lation windows within the application. Bob explains that a New
AUGUST 1995
Window option on the Window menu is necessary so he can
calculate his bonus multiple times, receiving a bonus check for
each additional window he creates. After failing to persuade Bob
that this is not the most ethical way to increase one’s compensa-
tion, you reluctantly agree to implement Bob’s new feature.

You determine that you’ll simply add a new menu choice to the
system, enabling the creation of a new MDI child window by
creating another instance (instantiation) of the child window
form. You can create this menu by dropping a menu component
on the Parent form. Then right-click on the component, select
Menu Designer, and define the menu (see Figure 3).

To complete the task, modify the OnClick procedure for the
Window | New Window menu choice (by double-clicking on
OnClick on the Events page of the Object Inspector, as shown in
Figure 4). Here’s the modified procedure:

procedure TfrmMDIParent.menuNewClick(Sender: TObject);
var

frmChildTemp: TfrmMDIChild;
begin

{ Create a new instance of the MDI child window form }
frmChildTemp := TfrmMDIChild.Create(Self);

end;

In this procedure, the var statement declares a form object
named frmChildTemp that is of the TfrmMDIChild class (the
class created when the MDI child form was added to our pro-
ject). This is also the same syntax by which new variables are
defined. The object type TfrmMDIChild is available from the
Delphi INFORMANT ▲ 10

On The Cover

Figure 3 (Top): Creating the menu for our example application.
Figure 4 (Bottom): Modifying the OnClick procedure for the Window
| New Window menu item.

Figure 5: The results of the first try at creating child windows.
MDI child unit that you added to the project earlier. Attached to
the child unit is a form named frmMDIChild, containing the
definition for the TfrmMDIChild class.

Now Bob can create new child windows at will (see Figure 5).
This example highlights how child windows (which are essential-
ly objects) are created by using a handle of the same object type
as that of the actual window’s class. Additional properties and
methods can be used to control MDI applications. We’ll discuss
these properties as well as creating new MDI child windows.
Useful Properties for MDI Window Management
The highest window class, TForm, includes a number of proper-
ties that support MDI parent and child windows. You can use
these properties to affect the behavior of all child forms in your
MDI application. Since forms are used as the basis of the user
interface, changing overall form-handling properties often has a
major effect on interface functionality.

A number of MDI parent window properties that are read- and
run-time only are not available in the Object Inspector at design
AUGUST 1995
time. This is because these properties aren’t applicable during
form design. The read- and run-time properties are:
• MDIChildCount: An integer value containing the number of

currently open MDI child windows.
• ActiveMDIChild: A value of TForm type that can be used as a

handle to manipulate the active MDI child window.
• MDIChildren: An integer-indexed array of TForm containing

MDI child window handles in the order the child windows
were created.

As discussed earlier, two types of forms are required in MDI
applications — one for the parent form and another for the child
form. We have already discussed how to set a form to become an
MDI parent window. Likewise, MDI child windows must have
their FormStyle property set to fsMDIChild.

All MDI applications consist of a parent form having a
FormStyle property value of fsMDIForm that identifies the
parent MDI form. The parent MDI form must also be refer-
enced in the application’s CreateForm method, which Delphi
handles automatically. The FormStyle property is set at design-
time in most cases, but it can also be set at run-time.

Changing a child window’s FormStyle property from
fsMDIChild to fsNormal enables that window to be brought
outside the parent MDI window, as it’s no longer a child win-
dow. This can also be done at design- or run-time.

The Visible property determines whether a visual object is
shown or hidden at run-time. Typically, MDI parent forms
are not hidden. It’s also somewhat odd to consider hiding
child forms, and probably the reason this is simply not
allowed in a Delphi MDI application.
Incorporating MDI Window Methods
Now we’ll turn our attention to the additional methods of the
TForm class that work with MDI windows. Along with the
Create method used in our previous example, there are a
number of other methods that are useful when assembling
MDI applications. MDI methods are recognized only by
Delphi INFORMANT ▲ 11

On The Cover
MDI parent windows (those with a FormStyle property value
of fsMDIForm).

To implement Bob’s outlandish request, we had to dynamically
create MDI child windows at run-time whenever the Window |
New Window menu choice is selected. The following procedure
is identical except that the MDIChildCount property is being
used to increment the child windows’ captions:

procedure TfrmMDIParent.menuNewClick(Sender: TObject);
var

frmChildTemp: TfrmMDIChild;
begin

frmChildTemp := TfrmMDIChild.Create(Self);
frmChildTemp.Caption := IntToStr(MDIChildCount);

end;

Figure 6 shows an MDI parent form after Window | New
Window has been selected four times. Note that the child win-
dows now have different captions.
Figure 6 (Top): Now the child windows have unique titles based on
the MDIChildCount property. Figure 7 (Bottom): The result of the
ArrangeIcons method.
Arranging Icons
The ArrangeIcons method organizes the icons of minimized MDI
child windows so they’re evenly spaced along the bottom of the
parent MDI window. The ArrangeIcons method must be sent
only to MDI parent windows (again, those having a FormStyle
property value of fsMDIForm).

The ArrangeIcons method is typically linked to your MDI applica-
tion’s Arrange Icons command on the Window menu (if you have
one, otherwise you’re probably not implementing a true MDI-com-
pliant application). Here is an example of the ArrangeIcons method:

procedure TfrmMDIParent.menuArrangeIconsClick(
Sender: TObject);

begin
TfrmMDIParent.ArrangeIcons;

end;

Alternatively, you can abbreviate the ArrangeIcons statement by
using a more object-oriented syntax:

procedure TfrmMDIParent.menuArrangeIconsClick(
Sender: TObject);

begin
ArrangeIcons;

end;

Abbreviations of this type apply to all MDI methods as well as
for all properties belonging to the procedure class.

Add this code to your form and then create and minimize some
MDI child windows. Then, shuffle their arrangement on the MDI
parent window. Selecting Window | Arrange Icons causes the
MDI child window icons to be arranged as shown in Figure 7.

You may wonder why you have to bother issuing an ArrangeIcons
method, since virtually all MDI applications provide support for
arranging icons, tiling, and cascading their child windows. There
is indeed an easier way that involves using an application
template. Delphi’s application templates are simply prebuilt pro-
AUGUST 1995
totypes that can contain code that you can reuse. After reading
this article, you will be able to modify and tailor an MDI appli-
cation template to your specific needs.
Cascading MDI Windows
The Cascade method arranges the child windows so they overlap
each other. A cascaded set of windows shows title bars of as
many windows that fit on-screen, allowing the user to easily
choose an available MDI child window.

Here’s an example of how the Cascade method is used:

procedure TfrmMDIParent.menuCascadeClick(Sender: TObject);
begin

Cascade;
end;

When MDI child windows are first created (e.g. using Window
| New Window), they are placed in a cascaded arrangement
within the parent (refer to Figures 5 and 6).
Closing the Current Child Window
Most of the work required to close child windows has been
done for you by Delphi. There’s only one modification you
need to make to have the MDI children close as you would
Delphi INFORMANT ▲ 12

On The Cover

Figure 8: The result of the Tile method.
expect them to when C4 is pressed. You need to modify
the child form’s OnClose method so that it responds appropri-
ately to the Close event:

procedure TMDIChild.FormClose(Sender: TObject;
var Action: TCloseAction);

begin
Action := caFree;

end;

As you can see, the OnClose procedure takes a parameter
named Action. The value of Action determines how the proce-
dure will respond to the Close event. We want the window to
close, so we assign the caFree constant to Action. (For more
information, see “caFree” or “TCloseEvent Type” in Delphi
on-line help.)

You can also add an explicit menu choice to close child win-
dows (that is, a File | Close menu option) using the Close
method. To do so, you need to add a menu item and then mod-
ify its OnClick procedure:

procedure TfrmMDIParent.menuFileCloseClick(Sender:
TObject);
begin

if ActiveMDIChild <> nil then
ActiveMDIChild.Close;

end;

This code checks the ActiveMDIChild property to make sure
that there is a child window to close. If there isn’t, issuing the
Close method will cause a General Protection Fault.
Next and Previous
The Next method makes the next MDI child window in the
MDI parent window sequence the active MDI child form. The
Next method treats the MDI child windows as a circular list.
For example, if you send the Next method to the MDI parent
window and the currently selected MDI child window is the
last MDI child window out of at least two, the Next method
causes the first MDI child window in the list to be made active.

The following illustrates use of the Next method:

procedure TfrmMDIParent.menuNextClick(Sender: TObject);
begin

Next;
end;

The Previous method behaves similarly to the Next method.
However, Previous selects child windows in the opposite direc-
tion. Like the Next method, the Previous method also treats the
list of MDI child windows as a circular list. If the Previous
method is issued when the first MDI child is active, the last
MDI child becomes active.
Jon Matcho has been building business systems since 1987. Since
then, Jon founded Brickhouse Data Systems, Inc., an East Coast con-
sulting firm specializing in software development. In 1993 he joined
Professional Computer Solutions, Inc. to assist in the delivery of mis-
sion-critical database solutions. You can reach Jon at (908) 704-
7300, or on CompuServe at 71760,2720.
Tiling MDI Children
The Tile method sizes the MDI child windows so they don’t over-
lap each other. The client area of the MDI parent window is
divided into different regions, each with an MDI child window
contained (see Figure 8). This code example uses the Tile method:
AUGUST 1995
procedure TfrmMDIParent.TileMenuClick(Sender: TObject);
begin

Tile;
end;
Conclusion
Of course, now that you have all this information, you have all the
license needed to create interesting and unique Delphi applications
— right? Not entirely. Keep in mind that your Windows users will
expect consistency between applications. And with the impending
release of Windows 95, there will be a greater call to provide the
user with uniform application interfaces. This does not mean that
an MDI-compliant application will always be best. Perhaps an SDI
implementation would be better suited to your user’s needs.

Fortunately, Delphi makes it simple to create and maintain
either interface. The freedom you have to use built-in templates
or create custom templates is provided by Delphi. All you have
to do is concentrate on the user and the application-specific
logic. (In fact, it’s important to note that an excellent model for
a robust MDI application is available in the form of the MDI
Application project template provided with Delphi. You should
definitely study it before creating your own MDI applications.)

Next month we’ll discuss an interface style that is growing in
popularity, the Single Document Interface (SDI). We'll compare
SDI and MDI and build a simple SDI application.

This article was adapted from material for Using Delphi: Special
Edition (Que, 1995) by Jon Matcho, David Faulkner, et al. ∆

The demonstration project referenced in this article is available
on the 1995 Delphi Informant Works CD located in
INFORM\95\AUG\JM9508.
Delphi INFORMANT ▲ 13

AUGUST 1995

F
g
t
a

S
m
l
a
s

T
—
i
t

O
“

A Topical Search
Integrating On-Line Help in Delphi Applications

On the Cover
Delphi / Object Pascal / Windows Help

By Robert Palomo
or many people, their first encounter with the term hypertext conjures up
images of something out of Star Trek. As often happens however, reality
is rather mundane as we’ll see when we take a peek inside the technolo-

y behind hypertext. Ordinary or not, a well-designed hypertext-based help sys-
em can be a highly utilitarian, even “sexy” component of an application that
dds a great deal of value to your software.

oftware companies are now supplying more of their product’s documentation in an electronic for-
at. They do this because the cost of printing and shipping books takes a bite out of their bottom

ine. On the other hand, software users are often unwilling to relinquish the comforting security of
 hefty volume or two (or six). Indeed, sometimes a printed manual is vital. For example, if your
ystem has just crashed, an on-line system administrator’s guide would be pretty useless.

he popularity of CD-ROM based multimedia titles — such as Microsoft’s Encarta encyclopedia
 is doing much to encourage acceptance of the computer screen as a preferred medium for read-

ng and gleaning information. CD-ROM enables software companies to distribute the entire con-
ents of their printed manual sets on disk, as Borland does with Delphi.

n-line documentation solutions range from entire printed manuals “dumped” into a format for
viewer” software (that displays text in a linear fashion similar to a book), to custom-designed hyper-

text help systems. This article focuses on the latter, since Delphi provides devel-
opers with some nicely encapsulated means of integrating this type of help in
their applications.
Authoring vs. Integration
Developing on-line help for Windows applications involves two fundamental
processes: creating, or authoring the help file, and integrating help with com-
ponents of the application. Authoring on-line help files provides the subject
matter for entire articles, books, and seminars. We’ll look at the process only
as it relates to integrating help into a Delphi application.

Authoring on-line help essentially involves writing text, dividing it into discrete
topics, formatting it to create hypertext links, creating graphics, and configuring
display elements such as secondary windows and menus. A help file is a self-con-
tained Windows application that users can run from Windows independently of
any other application. (For example, you can double-click on a .HLP file in the
Windows File Manager to run it.) However, that’s not always enough to meet
the needs of end-users, as we’ll see later.
Delphi INFORMANT ▲ 14

On The Cover

Menu bar
Button bar

Nonscrolling
region
Let’s begin by taking a quick look at
some of the basic things you, as an
application developer, should under-
stand about Windows on-line help.
We’ll then examine how Delphi
makes it easy to integrate help into
your applications.
Figure 1: The
Delphi Help
Contents
page has
several hyper-
text jumps.

Hypertext
jumps

Hypergraphics

Scrolling
region
What’s So Hyper about
Hypertext?
At the risk of over-simplifying, a
hypertext system is essentially just a
database application. The data are
“chunks” of text and/or graphics
called topics. Each topic is identified
by a unique alphanumeric key called
a context string. The Windows help
compiler creates a B-tree type index
of these context strings, enabling the
WinHelp engine (WINHELP.EXE)
to rapidly locate and display any
topic in the compiled help file.
A hypertext system is really no different from a typical customer
database where the customer file is indexed on a CustNo field
containing a unique value identifying one customer record. For
example, searching the index for “ABCCORP” accesses the
record for the customer “ABC Corporation”. Similarly, you could
have a topic titled “Using the Widget Control” in a compiled
help file. When the topic was created in the help source file, let’s
assume it was assigned the context string UsingWidget. When the
help compiler compiles the source files (text and graphics) into
binary format, it creates an index of the context strings defined
in the source file(s). Within the help source files, the help author
creates and formats text strings that point to a particular context
string. When the user clicks on that text in the compiled help
file, the help Engine (WINHELP.EXE) looks up the Context ID
value in the index and “jumps” to the topic identified by this
“key field” value — the context string.
What Is Context-Sensitivity?
The typical help file has a Contents topic similar to a book’s table
of contents. This screen summarizes the main subject areas in the
help file and provides jumps to the principal topic screen (see
Figure 1). These topic screens may in turn contain jumps to other
related topics. (Note that topics can be formatted to display in the
main help window as a secondary help or a popup window.)

If your users will be content to begin with the Contents screen
and muddle around in the help file from there, your life as a
developer is easy. You simply develop your application, author a
help file, and provide an icon to run the help file from the
Windows Program Manager.

Chances are that will not be the case. At some point a user won’t
understand what is happening, and your job will become more
interesting. Experienced Windows users tend to press 1
AUGUST 1995
expecting to see help for the active user interface (UI) element or
process that has proved baffling. If nothing happens, or if the
user is simply booted into the help file’s Contents topic, your
client will definitely be disappointed. Even though your on-line
help system is fully hypertext-based, it’s not context-sensitive.

Briefly, context-sensitivity is an application’s ability to display a
specific topic from a Windows help file at a given point during
run-time. We’ll focus on the mechanisms that Delphi provides to
enable you to “hook” the various components in a Delphi appli-
cation to specific topics in a Windows help file.

Before discussing the specific techniques, however, there’s one
technical pitfall inherent to the current state of Windows help
development that you must understand so you can avoid it.
Understanding the Data Type Trap
The Windows application programming interface (API) provides
developers with the means to integrate context-sensitive help in
Windows applications. To accomplish this, the programmer pro-
vides a “hook” in the code that equates to the context string of a
specific topic in a help file when that code executes.

It’s a simple concept, but not so simple in practice. You go
through a lot of gyrations to get values into the right variables of
the correct data type: issue a call to the Windows API, start up
WinHelp, pass it the ID for the topic, and finally access and dis-
play the topic specified by the hook in the source code.

That’s the bad news. The good news is that Delphi makes this
process easy by providing components, properties, and methods
that encapsulate this otherwise aggravating bit of coding.

If you have experience with WinHelp and the Windows API,
you’re probably familiar with an interesting little glitch in the
Delphi INFORMANT ▲ 15

On The Cover
communication between these entities. Delphi requires you
to specify the help “hook” as an integer value in the
HelpContext property of visual components. That’s because
the Windows API requires numeric values for the help
Context IDs in a Windows application. Delphi dutifully
delivers these values as required.

Now here’s a good one: the WinHelp engine requires alphanu-
meric context strings to locate the topics in a help file’s Topic
index. In other words, you can’t just pass the Context ID from
your application through the Windows API to WinHelp. (I
know what you’re thinking, and yes, the same company did
develop both systems. Go figure.)

This means if you have a context string UsingWidget in the help
file, there’s no direct way to call it from a Windows application.
For example, if you specify 110 as the help Context ID in the
HelpContext property for your Form1.Widget1 component, that
value is delivered to the API as a numeric data type.

However, if you specify “110” as the context string for the
“Using the Widget Control” topic in the help source file, it will
be delivered to WinHelp as a character value. Delphi provides a
handy way around this little problem with the HelpJump and
HelpContext methods (which we’ll look at a bit later). These
methods are fine for use in event handlers, but to provide con-
text-sensitive access to help topics using 1 you need to coordi-
nate your Context IDs in the help project file.
Figure 2 (Top): A sample .HPJ file. Figure 3 (Bottom): Using an
included .TXT file to integrate Context IDs with the .HPJ file.
The Help Project File
The WinHelp compiler begins its work with the help project
(.HPJ) file. This is basically just an .INI file. It has different sec-
tions, each identified by bracketed keywords (e.g. [CONFIG]).
Figure 2 shows an example of a simple .HPJ file. The [MAP] sec-
tion of the .HPJ file is where the numeric help Context IDs
from your Delphi application are equated to their alphanumeric
context strings in the help file.

If your only connection with the help authoring process is to
supply the numeric Context ID values from your application
components to a help author, you have a cushy job and should
try to hang onto it. You only need to coordinate with the help
author (who handles the production of the help file) to get the
two sets of IDs in sync in the [MAP] section of the help project
(.HPJ) file. You don’t even need to touch the .HPJ file. (In fact,
some help authors would do you grievous bodily harm for even
thinking about it.) Instead, you can create a separate text file
containing the [MAP] section that the help author can reference
with an include statement in the .HPJ file (see Figure 3).
Hooking Delphi Components to Help Topics
Let’s turn our attention to integrating context-sensitivity in a
Delphi application. Delphi’s architects have thoughtfully provid-
ed the HelpContext property for every visual component that can
receive focus, specifically for integrating context-sensitive help.
The default value for this property is zero. At run-time, if a com-
ponent has a zero value in the HelpContext property, has focus,
AUGUST 1995
and the user presses 1, nothing happens. This is great, because
if there are components that you don’t want or need to provide
context-sensitive help, you don’t have to do anything. Just leave
the default zero value in the HelpContext property.

By entering a positive, non-zero value in the HelpContext proper-
ty, you set up the means for accessing a topic in the help file
(which for now, we’ll assume already exists). The value need not
be unique within your application. For example, the OK buttons
in five different dialog boxes might all have the same value in the
HelpContext property because you want the same help topic to
display for all the buttons.

It’s important to understand that specifying a Context ID in the
HelpContext property is only one step in the process of imple-
menting context-sensitivity. You must still coordinate these IDs
with the help authoring process as discussed earlier.
Planning a HelpContext ID Scheme
You will probably want to devise some logical scheme for the
values of the HelpContext property for your application’s compo-
nents. The organization is up to you, but it should be part of
your application design.
Delphi INFORMANT ▲ 16

On The Cover
Depending on the scope of your application, you might
define different ranges of values and the parts of the applica-
tion. For example, one range might be reserved for an entire
module, and sub-ranges defined for component windows of
those modules. Or, in a small application, you might have
one range for each form or dialog box, or one reserved only
for menus, and so forth.

As you plan the ranges, make them large enough so that during
initial development each component’s HelpContext ID incre-
ments by five. For example, for three button components on a
form, you would set the HelpContext properties as 100, 105, and
110 respectively (instead of 100, 101, and 102). This leaves
room in the range for additional components without having to
make major modifications to the [MAP] section of the .HPJ file.
Properties and Methods for Accessing Windows Help
Delphi provides properties and methods that enable you to
access specific topics in a help file, or in different help files. In
this section, we’ll summarize these and take a look at some cre-
ative ways you might use them.

Delphi’s TApplication component encapsulates the functionality
needed to access WinHelp via the Windows API. The WinProcs
unit contains methods for accessing specific help topics in a
given help file.

Before your application can display help, you must specify a help
file for it. The HelpFile property of TApplication specifies the
name of the help file that the various help access methods will
look at. You normally specify the name of this file by selecting
Options | Project and choosing the Application page of the
Project Options dialog box (see Figure 4).

You can also set or change the designated help file at run-time
with an assignment:

Application.HelpFile := 'helpfile.hlp';

If you don’t specify a help file either at design time in Project
Options or at run-time in code, the application will not display
help at run-time. Without a help file specified, it doesn’t matter
that you may have assigned Context IDs in the HelpContext
property of components, or that a .HLP file exists.
AUGUST 1995

Figure 4:
The
Application
page of the
Project
Options
dialog box.
TApplication has three methods that pertain to the display of on-
line help: HelpCommand, HelpContext, and HelpJump. If you
have experience in other environments working with WinHelp,
then you may prefer the HelpCommand method for invoking and
controlling help from a Delphi application. This method provides
a quick hook-up from the Delphi environment to any of the
WinHelp command macros.

Besides accessing topics in context, you can control properties of
the help window — such as size, color, or position — and dis-
play topics in secondary windows. HelpCommand is well docu-
mented in the Delphi on-line help system, and you should be
able to learn and use it quickly.

If you want to access a specific help topic with code, then you’ll
appreciate the simplicity of the HelpContext and HelpJump meth-
ods. These provide the same result: the display of a specific topic
in the help file. The difference is in how you specify the Context
ID for the help topic you want to access.

An application developer will tend to approach context-sensitivity
from the standpoint of the application user-interface. You know
what components are in a specific dialog box or window, and you
know (or can easily look up) the numeric Context ID in the Object
Inspector. Therefore, you would know the Widget component in
the Foo dialog box has a Context ID of 110 in its HelpContext
property. You may not know (nor care) that the help file topic asso-
ciated with it is “Using the Widget Component” with a context
string of UsingWidget. You simply want to display whatever topic is
in the help file for the Widget component when it has the focus and
the user presses 1.

If you want to display this topic in response to another event,
simply call the HelpContext method in your event handler:

Application.HelpContext(110);

Help authors tend to approach context-sensitivity from the
standpoint of the help source file. They may not even know how
to run Delphi, much less deal with the values of the HelpContext
property of components. They may know only that the topic
“Using the Widget Control” has a context string UsingWidget in
the help source document, and this is the value they can supply
to you, the application developer. Not a problem — you can
display the same help topic with a call to HelpJump:

Application.HelpJump('UsingWidget');

Remember, you need to use these methods only if you want to
invoke a specific help topic in response to some event other than
the user pressing 1. 1 context-sensitivity is already built into
all components having a HelpContext property. You need only
specify a non-zero Context ID value in that property, and map the
value appropriately in the help project file as we discussed earlier.
Some Practical Techniques
Let’s look at a practical application you might develop using these
methods. This is a module for a Human Resources system that
Delphi INFORMANT ▲ 17

On The Cover

Figure 5: The Human Resources sample application.

More Information about
Help Authoring

To create a Windows help file, you need: a word processor
capable of saving files as Rich Text Format (.RTF) files; a
Windows help compiler (HCP.EXE); a hotspot editor for
creating hypergraphics (SHED.EXE); and a paint program
that can create .BMP files. The help compiler and Hotspot
Editor both ship with both versions of Delphi. Also avail-
able with Delphi is CWH.HLP, an on-line help-authoring
guide. This file resides in the \DELPHI\BIN directory in a
default Delphi installation. Another good resource is the
Microsoft Help Authors Forum on CompuServe.

I can also recommend Developing On-Line Help for
Windows by Scott Boggan, David Farkas, and Joe Welinske
(SAMS). This book will take you from neophyte to consul-
tant-level expertise in Windows help development. It’s well-
organized and indexed, very readable, and covers all the
issues. It includes a disk containing Word templates and
macros optimized for creating Windows help source files,
example help projects, help project file templates, and
bitmap graphics you can use in your own projects. It also
presents a comprehensive review and comparison of several
third-party help authoring tools.

Third-Party Tools
Windows Help Authoring Utility
(on the Microsoft Developer Network CD)
Microsoft Corp.
1 Microsoft Way
Redmond, WA 98052
(206) 882-8080

RoboHelp
Blue Sky Software Corp.
7486 La Jolla Boulevard, Suite 3
La Jolla, CA 92037
(619) 459-6365

Doc-To-Help
WexTech Systems, Inc.
310 Madison Avenue, Suite 905
New York, NY 10017
(212) 949-9595

Help Magician
Software Interphase, Inc.
82 Cucumber Hill Road
Foster, RI 02825-1212
(800) 542-2742
(401) 397-2340
provides information and answers to employee questions on-line.
The information is contained in several Windows help files. The
text of these files are maintained by different people in the HR
department. There is also a help file for the module itself.

The help files are as follows:
• INSURE.HLP — Information on medical, dental, and life

insurance plans.
AUGUST 1995
• BENEFITS.HLP — Information on all other employee benefits.
• POLICIES.HLP — Information on general employment poli-

cies and regulations.
• HRINFO.HLP — Help file for the information application

itself.

You could certainly combine the source documents for these files
and compile a single Windows help file for the module.
However, let’s assume there’s a reason to keep them separate to
illustrate some techniques you can use in Delphi to change the
TApplication component’s HelpFile property. You also want to
keep them separate to address specific topics in the various .HLP
files at different times, depending upon what’s happening in the
application UI.

At design time, we’ll specify HRINFO.HLP as the application
help file. We’ll create a UI that will switch the help file as need-
ed. Then, we’ll create a main form for the application called
MAINFRM.PAS, as shown in Figure 5.
This form has five BitBtn components labeled Insurance,
Benefits, Policies, Help, and Close. The event code behind the
first four buttons hides the main window, displays a button bar,
and executes the OnClick event of the appropriate Speedbutton
component on the button bar:

procedure TMainWin.BBtnInsuranceClick(Sender: TObject);
begin

MainWin.Hide;
BtnBarWin.Show;
BtnBarWin.SBInsuranceClick(Sender);

end;

Each of the BitBtn components has a similar OnClick event handler.

On the button bar, each Speedbutton sets the current help file
and displays its Contents screen:

procedure TBtnBarWin.SBInsuranceClick(Sender: TObject);
{ User has selected Insurance button in main screen }
begin

{ Display Speedbutton in down state }
SBInsurance.Down := True;
{ Set current Help file }
Application.HelpFile := 'INSURE.HLP';
{ Access Help file Contents }
Application.HelpCommand(HELP_CONTENTS, 0);
PnlInsurance.visible := True;{ Display button panel }

end;
Delphi INFORMANT ▲ 18

On The Cover

Figure 6:
The example
help system
in action.

Robert Palomo has been a technical writer in the software industry in Seattle, WA and
Silicon Valley, CA for the past five years. His most recent job was as a member of the
Delphi documentation group at Borland International. The extensive staffing cutbacks
at Borland gave him enough free time after Delphi shipped to set up shop part-time as
a consultant specializing in integrating context-sensitive help in Delphi and other
Windows applications. Robert also does Delphi application development work. You can
contact him on CompuServe at 76201,3177 or on the Internet at
76201.3177@compuserve.com.
Each Speedbutton event handler specifies a different help file. The
help window is sized in the .HPJ file’s [WINDOWS] section to allow
the button bar to display beside it (see Figure 6).

The Insurance button displays a panel on the button bar with
several speedbuttons that access a specific topic in the help file
using the HelpJump method. For example, the Med button code
looks like this:

procedure TBtnBarWin.SBMedInsClick(Sender: TObject);
begin

Application.HelpJump('MEDICALPLAN');
end;

The Insurance, Benefits, and Policy buttons on the button bar have
their GroupIndex property set to a value of 1, and the AllowAllUp
property set to False. This eliminates the need to test for the value of
the button’s Down property. You simply set the Down property of
the selected button to True, and the others with the same
GroupIndex property display in the “up” state. (You could achieve
the same effect with a RadioButton group, but this technique
enables you to use glyphs on the buttons for a more elegant UI.)
AUGUST 1995
The Windows Help button on the main form switches the active
help file back to the design time default, HRINFO.HLP:

procedure TMainWin.BBtnMainHelpClick(Sender: TObject);
begin

Application.HelpFile := 'HRINFO.HLP';
Application.HelpCommand(HELP_CONTENTS,0);

end;

The main three BitBtn components are context-sensitive.
Pressing 1 while any of them have focus invokes a specific
topic in the application’s help file. This file (HRINFO.HLP)
is set as the active help file whenever the main form’s
OnActivate event occurs.
Conclusion
Developing a well-planned on-line help system with context-
sensitivity can provide an extra measure of value to the soft-
ware you develop with Delphi. Delphi provides you with
some handy short-cuts that reduce the somewhat convoluted
integration process for context-sensitivity to a simple property
setting. And as we saw in the example application, Delphi
enables developers to experiment with Windows help in some
interesting and out-of-the-ordinary ways. ∆

The demonstration application referenced in this article is available
on the 1995 Delphi Informant Works CD located in
INFORM\95\AUG\RP9508.
Delphi INFORMANT ▲ 19

AUGUST 1995

Initialization Rites
Using Windows .INI Files in Delphi

On the Cover
Delphi / Object Pascal

By Douglas Horn
N early every commercial Windows application employs an .INI file. Even
a glance at the \Windows directory of most PC’s will show how widely
they’re used — and some programs use several.

Unfortunately, .INI files are underutilized by most application developers. This is despite the fact
that they’re extremely useful for storing information that must be saved between program sessions.

Delphi makes it particularly easy to implement an .INI file with an application. This article will
introduce .INI files and explain their use with Delphi.
What Are .INI Files?
INI files are named for their common three-letter file extension, an abbreviation for initialization.
They’re used to store configuration parameters, user preferences, program status, and other infor-
mation that should persist from one execution of an application to the next.

Two of the best-known .INI files are WIN.INI and SYSTEM.INI. Both of these files are used to
store important parameters for the Windows operating system. While most Windows applications
use an .INI file named for the executable (e.g. DELPHI.INI), many use the WIN.INI file instead
of, or in addition to, their own file.
.INI files are simple text files (see Figure 1). Each .INI file is divided into
sections, easily recognizable by a section title enclosed in brackets (e.g.
[Boot]). Within each section are a number of statements. Each statement
begins with a variable or identifier, followed by its value (e.g.
spooler=True). .INI files are not case-sensitive.

How Delphi Handles .INI Files
Delphi interacts with .INI files using its TIniFile object. The TIniFile object
has 16 methods, about half of which programmers will use regularly in
implementing .INI files (see Figure 2). The first task when using .INI files
in Delphi applications is to add the IniFiles statement to the uses clause of
the program unit that will call the .INI file:

uses
IniFiles, SysUtils, WinTypes, WinProcs, Messages,
Classes, Graphics, Controls, Forms, Dialogs, ExtCtrls,
StdCtrls, Menus, Buttons;
Delphi INFORMANT ▲ 20

Method Description

EraseSection Erases a section of an .INI file.

FileName The name of the .INI file the TIniFile
object encapsulates.

ReadBool Retrieves a Boolean value from an .INI file.

ReadInteger Retrieves an Integer value from an .INI file.

ReadSection Reads all variables of a section into a
string.

ReadSectionValues Reads all variables and their values of a
section into a string.

ReadString Retrieves a string value from an .INI file.

WriteBool Writes a Boolean value to an .INI file.

WriteInteger Writes an integer value to an .INI file.

WriteString Writes a string to an .INI file.

Figure 1 (Top): A section of a typical Windows .INI file.
Figure 2 (Bottom): Key methods of the TIniFile object.

On The Cover
Once IniFiles is added to the uses clause, the .INI file need only
be declared as a variable and then created.

The following illustrates the beginning of a typical procedure
that accesses an .INI file:

procedure TForm1...
var

AppIni: TIniFile;
begin

AppIni := TIniFile.Create('APP.INI');
...

After the TIniFile handle (AppIni) is declared, the .INI file is
opened using the TIniFile.Create method, where APP.INI is the
name of the file to be read from or written to. The Create
method opens an existing .INI file if the one specified exists, or
creates a new one if it doesn’t. (Unless a specific path is supplied,
Delphi will search for APP.INI in the \Windows directory.)
AUGUST 1995
When it’s no longer necessary to access the .INI file, the Free
method is used to release the .INI file, destroy the TIniFiles
object, and free the resources reserved for the object:

...
AppIni.Free;

end;

These minor preliminaries are necessary whenever TIniFiles are
used. Between the Create and Free methods, however, lie a large
number of possibilities.
Reading, Writing, and ’Rithmetic
The real workhorses of the TIniFile methods are the “reads” and
the “writes”. The three write methods are WriteBool, WriteInteger,
and WriteString. These methods are similar; the only factor that
differentiates them is the type of value each handles.

Each write method requires three parameters: the section, identi-
fier (or variable), and value. For example, the following state-
ment would write the string value RIVETS.BMP to the
WallPaper identifier in WIN.INI’s [Desktop] section (assum-
ing a link to WIN.INI was already created). Note that the brack-
ets are not used when specifying the section:

WinIni.WriteString('Desktop','WallPaper','RIVETS.BMP');

Of course the value may be literal, as above, or can be derived
from a property just as any other value in Delphi. The following
line would then set an .INI file property to the corresponding
program property’s current state:

AppIni.WriteBool('Settings','ShowButton',Button1.Visible);

The read methods are ReadBool, ReadInteger, and ReadString
— each corresponding to a write method shown above. The
syntax is also quite similar between corresponding read and
write methods.

Conversely, while a write method specifies a value, a read method
uses a default value that is used in case the target .INI file state-
ment is blank (or non-existent). The following two read methods
correspond directly to the write methods previously shown:

Canvas.TextOut(10,10,'Wallpaper Image = ' +
WinIni.ReadString('Desktop','WallPaper','none'));

Button1.Visible :=
AppIni.ReadBool('Settings','ShowButton',True);

There are two more read methods: ReadSection and
ReadSectionValues. These methods function somewhat differently
than those already described. Instead of reading a single specified
value, ReadSection and ReadSectionValues read an entire .INI file
section into a TStrings object.

The difference between the two methods is demonstrated in
Figure 3, where the ListBox component on the left uses the
ReadSection method, while the one on the right uses
Delphi INFORMANT ▲ 21

Figure 3: A simple pair of ListBox components illustrates the differ-
ences between the ReadSection and ReadSectionValues methods.

On The Cover
ReadSectionValues. ReadSection displays only the variables in the
section, and displays them regardless of whether they have val-
ues, or are preceded by the REM keyword. On the other hand,
the ReadSectionValues method displays the variable and its value
(the complete statement), and ignores blank variables or “REM-
ed out” statements.

This Object Pascal code produces the list box contents shown in
Figure 3:

procedure TForm1.FormActivate(Sender: TObject);
var

AppIni: TIniFile;
begin

AppIni:= TIniFile.Create('WIN.INI');
AppIni.ReadSection('Ports',Listbox1.Items);
AppIni.ReadSectionValues('Ports',Listbox2.Items);
AppIni.Free;

end;

The final TIniFile method of note is EraseSection. It’s not useful
under most circumstances, and in fact, could do a lot of damage
to a system if used improperly.
Figure 4: The sample application
illustrates a variety of practical
ways to use .INI files.
Sample Application
The sample application that
accompanies this article (see
Figure 4) shows how to
implement an .INI file that
stores a number of program
parameters when it closes.
The complete unit file
(INI_APP.PAS) is shown in
Listing One beginning on
page 24. Let’s take a look at
the code.

When the application opens,
the Create method
AUGUST 1995
(TFormSA.FormCreate) allocates memory to create a TIniFile
object, and passes it the file name of an .INI file. Also upon
opening, the application accesses the SAMPLEAP.INI file and
uses parameters that .INI file contains to reset itself.

The application’s main function is to read all the entries of the
[Desktop] section of the WIN.INI file into a ListBox compo-
nent. Then, the user can select a variable to inspect. If the user
resizes the window at any time, the user-interface objects repo-
sition themselves relative to the application’s new dimensions.

This sample application relies heavily on the most useful form of
.INI file manipulation — simple, single-statement read and
write method calls. While the ReadSection and ReadSectionValues
methods have their merits, they are less useful than the more
straightforward methods. This application uses ReadSection to fill
the ListBox component with the variables in WIN.INI’s
[Desktop] section. However, these methods are rarely useful for
manipulating .INI files. (Again, the EraseSection method is used
even less and should be implemented with caution.)

To view the code section by section, the initial lines of code con-
sist of the necessary preliminaries. Note the IniFiles reference in
the uses clause. This statement must be added whenever TIniFile
methods will be used.

The first procedure, FormClose, records all the desired informa-
tion to the SAMPLEAP.INI file. First it declares TheIni as a
TIniFile object, and then creates the link to the application’s
own .INI file, SAMPLEAP.INI. Next, the procedure writes
information consisting of the form’s size and coordinates, stored
as integers, and the value of the current variables list (ListBox1)
setting, stored as a string.

Note that the information could more easily be stored as an inte-
ger, using the ItemIndex property. However, using this property,
this would only store a position on the list, not an actual vari-
able. In case WIN.INI is changed, the variable setting might not
remain the same.

The next procedure, FormCreate, not only accesses
SAMPLEAP.INI but WIN.INI as well, using the same TheIni
object. The first operation is to create a link to WIN.INI, and
then read the contents of the [Desktop] section into the
TStrings object, ListBox1.Items. After this is accomplished, the
link to WIN.INI is destroyed and TheIni object is linked to the
sample application’s own .INI file.

Next, the sample application reads the values stored during
FormClose (using the ReadInteger method), and uses them to set
the form to the size and position it held when it was last closed.
Using the similar ReadString method, the procedure resets the
ListBox selection to that recorded in the .INI file.

The FormResize procedure is then called to establish the proper size
and position of the user-interface objects, based on the form dimen-
sions stored in the .INI file. Because the Object Pascal code exists in
Delphi INFORMANT ▲ 22

On The Cover
the FormCreate procedure (rather than FormActivate), these changes
occur before the form is drawn, and remain invisible to the user.

Button1Click is the last procedure to employ .INI file operations.
When called (when the user clicks the Inspect button) the pro-
cedure creates a link to WIN.INI as above, finds the value of the
entry selected in the list of variables (ListBox1), and displays
the value in the edit box (Edit1).

The two final procedures provide simple housekeeping. FormResize is
called by FormCreate. It’s also called whenever the user changes the
form’s dimensions. This procedure simply resizes and repositions
user-interface objects relative to the form’s size. This is done to give
users a logical reason to resize the form (i.e. to resize the ListBox
depending on the length and number of the [Desktop] variables) so
that new coordinates and dimensions can be stored in the .INI file.

The last procedure, BitBtn1Click, simply closes the sample
application.
Conclusion
I hope this article has helped to demystify Windows .INI files.
These files can be easily implemented, and add an extra level of
user-friendliness and sophistication to any Delphi application.
Although for clarity’s sake, the sample application stores only
simple coordinates and settings, .INI files can be used to store
almost any type of program information.

Next month, we’ll extend the .INI file concept further by com-
bining it with MDI (multiple-document interface) applications
and menus to create a list of most-recently used files (or MRU).
This is an advanced feature that enables users to quickly and eas-
ily pick up where they left off. ∆

The demonstration project referenced in this article is available on
the 1995 Delphi Informant Works CD located in
INFORM\95\AUG\DH9508.
AUGUST 1995 Delphi INFORMANT ▲ 23

Douglas Horn is a freelance writer and computer consultant in Seattle, WA. He special-
izes in multilingual applications, particularly those using Japanese and other Asian
languages. He can be reached via CompuServe at 71242,2371.

AUGUST 1995 Delphi INFORMANT ▲ 24

TheIni := TIniFile.Create('SAMPLEAP.INI');
FormSA.Top := TheIni.ReadInteger('Settings',

'Top',0);
FormSA.Left := TheIni.ReadInteger('Settings',

'Left',0);
FormSA.Height := TheIni.ReadInteger('Settings',

'Height',100);
FormSA.Width := TheIni.ReadInteger('Settings',

'Width',100);
ListBox1.ItemIndex := ListBox1.Items.IndexOf(

TheIni.ReadString('Settings','Variable',''));
TheIni.Free;

FormSA.FormResize(FormSA);
end;

procedure TFormSA.Button1Click(Sender: TObject);
var

TheIni: TIniFile;
begin

if ListBox1.ItemIndex > -1 then
begin

TheIni := TIniFile.Create('WIN.INI');
Edit1.Text := TheIni.ReadString('Desktop',
ListBox1.Items[ListBox1.ItemIndex],'');
TheIni.Free;

end;
end;

procedure TFormSA.FormResize(Sender: TObject);
begin

if FormSA.Width < 250 then
FormSA.Width := 250;

if FormSA.Height < 300 then
FormSA.Height := 300;

ListBox1.Height := FormSA.ClientHeight - 179;
ListBox1.Width := FormSA.ClientWidth - 32;
Button1.Top := FormSA.ClientHeight - 122;
Button1.Left := FormSA.ClientWidth div 2 —

Button1.Width div 2;
Edit1.Top := FormSA.ClientHeight - 81;
Edit1.Width := FormSA.ClientWidth - 32;
BitBtn1.Top := FormSA.ClientHeight - 40;
BitBtn1.Left := (FormSA.ClientWidth div 2) —

(BitBtn1.Width div 2);
end;

procedure TFormSA.BitBtn1Click(Sender: TObject);
begin

Close;
end;

end.

End Listing One

Begin Listing One — INI_APP.PAS
unit Ini_app;

interface

uses
IniFiles, SysUtils, WinTypes, WinProcs, Messages,
Classes, Graphics, Controls, Forms, Dialogs, ExtCtrls,
StdCtrls, Menus, Buttons;

type
TFormSA = class(TForm)

ListBox1: TListBox;
Label1: TLabel;
Button1: TButton;
Edit1: TEdit;
BitBtn1: TBitBtn;
procedure FormClose(Sender: TObject;

var Action: TCloseAction);
procedure FormCreate(Sender: TObject);
procedure Button1Click(Sender: TObject);
procedure BitBtn1Click(Sender: TObject);
procedure FormResize(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
FormSA: TFormSA;

implementation

{ $R *.DFM }

procedure TFormSA.FormClose(Sender: TObject;
var Action: TCloseAction);

var
TheIni: TIniFile;

begin
TheIni := TIniFile.Create('SAMPLEAP.INI');
TheIni.WriteInteger('Settings','Top',FormSA.Top);
TheIni.WriteInteger('Settings','Left',FormSA.Left);
TheIni.WriteInteger('Settings','Height',FormSA.Height);
TheIni.WriteInteger('Settings','Width',FormSA.Width);
WriteString('Settings','Variable',

ListBox1.Items[ListBox1.ItemIndex]);
TheIni.Free;

end;

procedure TFormSA.FormCreate(Sender: TObject);
var

TheIni: TIniFile;
begin

TheIni := TIniFile.Create('WIN.INI');
TheIni.ReadSection('Desktop',ListBox1.Items);
TheIni.Free;

On The Cover

AUGUST 1995

Strings: Part I
An Introduction to Object Pascal Strings

OP Basics
Delphi / Object Pascal

By Charles Calvert
S trings. You work with them in virtually every application you develop, yet
there are probably a number of features associated with strings that you
haven’t had a chance to explore.

This first installment of a three-part series on strings will demonstrate that strings are really a
form of array. However, a number of interesting rules specific to strings do not apply to arrays,
and we’ll investigate most of these in detail. In particular, you’ll learn how to search for a sub-
string in a string, and how to parse a lengthy string.
A String Is Just a Form of Array
A string is very similar to, but not identical to, an array of characters. Consider the following
Object Pascal declarations:

type
TNearString = array[0..255] of Char;

var
NearString: TNearString;
MyString: string;

Based on this code fragment, MyString has all the traits of TNearString, plus a few special
qualities. In other words, a Delphi string is a superset of an array of Char that is 256 charac-
ters long. Let’s examine the differences.

All characters in an array of Char are equal; no one character has any special properties. In a
string however, the first character is called a length byte. It designates how many characters
exist in the string. Because the first character has this special task, the first letter in the string is
always at offset one.

It’s important to remember that most Chars can be represented in two ways. For instance, the letter
“A” can be printed verbatim, or it can be represented by the 65th member in certain character sets.
If you want to refer to the letter “A” by its place in a character set, you can enter #65. The # in this
example designates the item in question is a Char and not a simple numerical value. Therefore, the
number five is represented as 5, but the fifth character in a character set is represented by #5.

For example, consider a string containing the word “Hello”. This string is five characters
long, so the first byte in a string containing this word would be set to the fifth character
in a table of characters:
Delphi INFORMANT ▲ 25

OP Basics

Figure 2: To create the form for the EASYSTR program, simply drop

Figure 1: Assuming an Edit component (named Edit1) and Button
component (named Button1) exist on a form, this Object Pascal code
compiles and displays Hello in the Edit box.

procedure TForm1.Button1Click(Sender: TObject);
var

S: string;
begin

S[0] := #5;
S[1] := 'H';
S[2] := 'e';
S[3] := 'l';
S[4] := 'l';
S[5] := 'o';
Edit1.Text := S;

end;
NearString[0] := #5;

The next character in the array would be an “H”:

NearString[1] := 'H'; { H = #72 }

The rest of the letters would immediately follow:

NearString[2] := 'e';
NearString[3] := 'l';
NearString[4] := 'l';
NearString[5] := 'o';

The result is an array of six characters that looks like:

#5,'H','e','l','l','o'

If you took the whole process to an imaginary “memory
theater”, you would see six seats aligned one behind the
other. The person in the first seat would be told to remem-
ber the total number of letters in the word(s) that are part
of the string. The person in the second seat would remem-
ber the first letter of the string (in this case it’s an “H”).
The person in the next seat would remember the letter
“E”, and so on.

So far so good. But what about the remaining 250 characters
in the string? It doesn’t matter what information is stored in
those bytes. They can be zeroed out, or hold nothing but
garbage. It doesn’t matter what those bytes hold provided the
first byte is correctly set to the total number of valid charac-
ters in the string.

Let’s say the length byte in the above example was accidental-
ly set to #6 instead of #5.

Then, the letter the person in seat seven is supposed to
remember would become part of the string — usually with
disastrous results. For instance, the string Hello may suddenly
become any of the following:
• Hello1

• Hellob

• Hello#

• Hello+

In short, the behavior is unpredictable in such situations.

The code in Figure 1 will compile and run without error. It
prints the word Hello inside an Edit component. You can
view this code fragment as the anatomy of a string. It explic-
itly shows the elements that comprise a string. The follow-
ing code behaves identically to the code in Figure 1:

var
S: string;

begin
S := ‘Hello’;
Edit1.Text := S;

end;
AUGUST 1995
Clearly, this fragment is easier to write. However, the fact
that you can write code like this is a special feature of the
compiler. What the compiler actually does is shown in
Figure 1. However, it’s laborious to write all that code each
time you want to assign a value to a string. Therefore, the
compiler allows you to write code like the above example.

A brief sample program, named EASYSTR.DPR, demon-
strates these ideas. Specifically, EASYSTR shows what hap-
pens if you don’t treat a string’s length byte carefully. The
form for the EASYSTR program includes two buttons and an
Edit component (see Figure 2). The code for the EASYSTR
program is shown in Listing Two on page 28.

The EASYSTR program enables you to display a valid or invalid
string inside an Edit component. The invalid string is flawed
because it has an incorrect length byte. Specifically, it sets the
length byte to 150, although the string you want to print is only
five characters long.

This simple mistake would cause trouble in your program.
However, so you can clearly see what is going wrong, anoth-
er ScrambleString procedure was added to the program.
Delphi INFORMANT ▲ 26

two buttons, a panel, and a label onto a form.

Figure 3 (Top): If the length byte of a string is set to the wrong
value, the results can be chaotic. Figure 4 (Bottom): No matter how
you scramble the extra characters in a string, the result shown to the
screen is fine provided the length byte is assigned a valid value.

OP Basics
This ensures all the characters in a string are set to random
values:

procedure ScrambleString(var S: string);
var

i: Integer;
begin

for i := 0 to 255 do
S[i] := Chr(Random(255));

end;

This function sets all the characters in a string to various val-
ues between zero and 255 by using the Random function.
Random returns a number between zero and the value passed
in its sole parameter. However, in this case the goal is not to
produce a random number, but a random character. To
achieve this result, the Chr function is used. Chr is used to
convert a numerical value into a character.

Note that there is no significant difference between using the
Chr function and simply typecasting the value returned from
the Random function. For example, this code produces the
same result as using the Chr function:

S[i] := Char(Random(255));

Figure 3 depicts what may happen if you try writing a string
to an Edit component when the length byte is set to an arbi-
trarily large value. Clearly the result is less than optimal.
Characters are scattered across the component like some kind
of hieroglyphic, and the word Hello is discernible only after
you closely study the output.

You can compare the fiasco in Figure 3 with the orderly
results in Figure 4. In this second case, the compiler is passed
a valid length byte and the results are precisely defined and
readily understandable.
Null-terminated Strings
Before talking about strings in more depth, we’ll discuss
PChars, null-terminated strings, and the correct way to use an
array of Char as a string.

A null-terminated string has no length byte. Instead, the compil-
er searches for a #0 character and assumes that it marks the end
of a string.

Specifically, if you return to the examples shown earlier,
you can easily modify the functions so they will print a
properly formatted null-terminated string:

procedure TForm1.BCharsClick(Sender: TObject);
var

S: array[0..25] of Char;
begin

S[0] := 'H';
S[1] := 'e';
S[2] := 'l';
S[3] := 'l';
S[4] := 'o';
S[5] := #0;
Edit1.Text := S;

end;
AUGUST 1995
This code prints the word Hello in an orderly fashion. To
do this, it sets the first character of a null-terminated string
to the letter “H” and sets the sixth character to the value of
the first member of the currently selected character set.

It’s important to remember that you don’t end null-terminat-
ed strings with the number zero — use #0. The number zero
is usually the 48th member of a standard character set. It is
entirely distinct from the first member of that character set.

Null-terminated strings are frequently referred to as
PChars. PChars are pointers to arrays of Char. As a result
you must allocate memory for them before you try to use
them. For instance, the following code explicitly allocates
26 bytes of memory for a PChar before filling it with char-
acters and displaying it on the screen.

The memory is then deallocated:

procedure TForm1.BCharsClick(Sender: TObject);
var

S: PChar;
begin

GetMem(S,26);
StrCopy(S,'Hello');
Edit1.Text := StrPas(S);
FreeMem(S,26);

end;

When you allocate memory for a pointer, it’s similar to a per-
son entering the “memory theater” and telling a specific num-
ber of people they are part of a string. In this example, for
instance, 26 members of the audience are grouped under the
aegis of a single PChar.

Devotees of C/C++ will notice Delphi has a function
called StrCopy that mirrors the job performed by strcpy in
the land created by AT&T. That is, StrCopy copies one
string into another. There are also functions called StrCat,
Delphi INFORMANT ▲ 27

AUGUST 1995

OP Basics
StrPos, StrCmp, and so on, if you need them. The StrPas
function converts a PChar into a string. PChars become
particularly important when you start working with
Windows API functions.
Conclusion
Next month’s article will discuss how to store strings in text
files and retrieve them from text files. The third article will
explore parsing the contents of a text file, and converting the
data into fundamental Delphi types.

Next month we’ll also explore some real-world examples of
challenges you might face when working with strings. For
example, one classic problem we’ll tackle is the need to strip
blanks from the end of a string. See you then. ∆

This article was adapted from material for Charles Calvert’s
book, Delphi Unleashed, published in 1995 by SAMS publishing.

The demonstration program referenced in this article is avail-
able on the 1995 Delphi Informant Works CD located in
INFORM\95\AUG\CC9508.
Charlie Calvert works at Borland International as a Developer Relations Manager for
Languages. He is the author of Delphi Programming Unleashed, Teach Yourself
Windows Programming in 21 Days, and Turbo Pascal Programming 101. He lives
with his wife, Marjorie Calvert, in Santa Cruz, California.
Begin Listing Two — EASYSTR

unit Main;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls, Forms, Dialogs, StdCtrls, ExtCtrls;

type
TEasyString = class(TForm)

Panel1: TPanel;
Label1: TLabel;
Valid: TButton;
Bad: TButton;
procedure BValidClick(Sender: TObject);
procedure BBadClick(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
EasyString: TEasyString;

implementation

{$R *.DFM}

procedure ScrambleString(var S: String);
var

i: Integer;
begin

for i := 0 to 255 do
S[i] := Chr(Random(255));

end;

procedure TEasyString.BValidClick(Sender: TObject);
var

S: string;
begin

ScrambleString(S);
S[0] := #5;
S[1] := 'H';
S[2] := 'e';
S[3] := 'l';
S[4] := 'l';
S[5] := 'o';
Label1.Caption := S;

end;

procedure TEasyString.BBadClick(Sender: TObject);
var

S: string;
begin

ScrambleString(S);
S[0] := #150;
S[1] := 'H';
S[2] := 'e';
S[3] := 'l';
S[4] := 'l';
S[5] := 'o';
Label1.Caption := S;

end;

end.

End Listing Two
Delphi INFORMANT ▲ 28

AUGUST 1995

E
s

T
t
d
a
l
t

Data Validation: Part I
Validating Your Data in Delphi

DBNavigator
Delphi / Object Pascal

By Cary Jensen, Ph.D.
very database application needs the ability to validate data. This can be
as simple as ensuring that the user enters data in all upper-case letters,
or as complex as verifying that an entered value is consistent with data

tored in another table.

his month’s DBNavigator is the first of a two-part series on data validation. Part I introduces
he basic concepts of data validation, and describes how to apply field-level validation to stan-
ard components (i.e. components from the Standard page of the Component Palette not
ssociated with database tables). In Part II, we’ll look at applying both record-level and field-
evel validation to data-aware components (i.e. components from the Data Controls page of
he Component Palette).
Introduction to Data Validation
Record-level validation refers to the application of data-validity rules when a record is being posted
(written) to a table. When the user has finished editing a record, record-level validation code veri-
fies the data is accurate. If the code determines the record is not acceptable, the record should not
be posted to the table.

Field-level validation refers to the validation that takes place when a user enters data into a sin-
gle field. (The term “field” is used here in its database sense. In Delphi a “field” usually takes
the form of an Edit or DBEdit component.) In most cases, the validation process occurs when
the user has completed editing the field, although it can also be applied after each keystroke. If
the data in the field is determined to be unacceptable, the user is informed and won’t be per-
mitted to leave the field.

From the user’s standpoint, record-level validation is more convenient than field-level. Specifically,
when record-level validation is employed, the user can move freely among the records, leaving some
fields only partially complete to move onto other fields. As long as the user completes these partial
fields before attempting to post the data (and has also completed the record correctly), record-level
validation code will accept the record. This process mimics the way a user interacts with a paper form.

On the other hand, field-level validation can be intrusive. A user attempting to leave a field — or
perform another task that will result in the field being posted (such as inserting a new record) —
when the field is not complete is interrupted by the validation code. This interruption may be as
minor as the display of an error message in a status bar, or as significant as the display of a message
in a modal dialog box requiring acknowledgment.
Delphi INFORMANT ▲ 29

DBNavigator

Figure 1: Building the example form.
Field Validation with Standard Controls
In Delphi, you will quickly learn that sometimes less program-
ming is better. Specifically, if you can achieve a particular result
using either properties or code, use properties. Sometimes this
also means selecting the right component for the job. These rules
certainly apply when it comes to field-level validation.

In addition, how you perform field-level validation depends in
part on the type of component you are validating. The compo-
nents (or controls) that you place on a form are available in
two basic “flavors”: data-aware (i.e. associated with a field in a
table), or not. A data-aware edit component (i.e. a DBEdit
component) has different events than one that is not (i.e. an
Edit component), and consequently, requires distinct tech-
niques for field-level validation.

Let’s start by considering standard controls — components that
are not linked to a table. There are six of them on the Standard
page of the Component Palette:
• Edit
• Memo
• CheckBox
• RadioButton
• ListBox
• ComboBox

Of these six components, field-level validation is easiest with the
last five. A Memo component typically contains simple text (in
its Lines property) that is rarely evaluated programmatically.

The remaining four components can be set so the user cannot
enter invalid data. For example, a CheckBox can have only two
states; its Checked property can be True or False. There is no way
for the user to place this component in an invalid state. Likewise,
RadioButton and ListBox components display only those values
available to a user. Even a ComboBox can be configured to per-
mit only the selection of valid data.

This leaves the Edit component. Field-level validation is most
difficult with Edit components. This is because the user is
free to enter almost any value. However, your code may be
expecting a value that conforms to a particular data type, such
as a number, date, or time. Validation of Edit components
often requires validation code (an example of which is provid-
ed later in this article).

Note: There is a component similar to Edit that is somewhat
easier to validate without requiring code. This is the EditMask
component, and it appears on the Additional Component
Palette page. This component includes an EditMask property
which can be used to limit which characters the user can enter
into the control. Using the EditMask property is described in
Part II of this series.)
An Example of Code-Free Validation
The following example demonstrates how to create a standard
control that does not require field-level validation code. Since the
AUGUST 1995
ComboBox component is the one that requires the most adjust-
ment, this example will make use of that component.

Begin by creating a new project. (It’s always a good idea to
first create a directory to save the project in.) On your new
form place a Label and a ComboBox component from the
Standard page of the Component Palette (see Figure 1).
Change the Label’s Caption property to &Day of Week:, and
its FocusControl property to ComboBox1. (A Label component
cannot have focus, so the FocusControl property determines
which component focus will shift to when you press the
Label’s short-cut key, “D” in this case.)
Next, select the ComboBox. Begin by changing its Style property
to csDropDownList. This style requires the user to select from the
dropdown list. By comparison, when a ComboBox uses the
csDropDown style, a user can either select from the dropdown list
or enter text. Importantly, this entered text doesn’t have to corre-
spond to one of the dropdown list items, so you must validate
csDropDown style ComboBox components using the same tech-
niques as those used for Edit components.

You are now ready to define the contents of the ComboBox’s
dropdown list. Select the ComboBox’s Items property in the
Object Inspector and then click on the ellipsis that appears.
Delphi displays the String list editor. Now enter the days of the
week, one on each line, beginning with Sunday (see Figure 2).
Click the OK button to save the list.

Press 9 to compile and run the program. The running form
(see Figure 3) permits you to select any item from the dropdown
list. Importantly, it does not permit you to enter a value that is
not a day of the week. This is an ideal way of ensuring that your
data is valid, without having to write code.

You may notice the running form doesn’t have a default value in
the ComboBox when the form first opens. When a ComboBox’s
Style is set to csDropDown, you can use the Text property to
define the default value. But when Style is set to csDropDownList,
Delphi INFORMANT ▲ 30

DBNavigator

the Text property is blank. If you need to define a default value
for your DropDownList ComboBox, add the following line to the
form’s OnCreate event:

Figure 2 (Top): The String list
editor dialog box. Figure 3
(Left): The demonstration form
at run-time. The user can only
enter values from the
ComboBox’s dropdown list.
ComboBox1.ItemIndex := 0;

This Object Pascal statement sets the ComboBox’s default to the
first string stored in the List property (i.e. Sunday).
Validating Standard Controls Using Code
Edit components are more complex to validate. On one hand,
they possess properties you can use to ensure the user enters
appropriate data. On the other hand, there are many situations
where you must add code to ensure validity.

Important properties that you should consider using with
Edit components include CharCase, MaxLength, ReadOnly,
and Text. You can use CharCase if you want to control the
case of data entered into an Edit component. For example,
setting CharCase to ecUpperCase will convert all letters
entered into that field to upper-case, while ecLowerCase will
convert them to lower-case.

The MaxLength property enables you to define the maximum
number of characters the user can enter into a field. If the
user attempts to enter one character more than the defined
MaxLength value, the form beeps and the character is rejected.
When MaxLength is set to zero, no limit is enforced.

You use the ReadOnly property to prevent the user from changing
a value in an Edit component. Obviously, if an Edit component is
read-only, the user cannot change the value. Often, you modify
the ReadOnly property at run-time, changing the Edit component
from editable to non-editable, based on events on the form.
AUGUST 1995
The Text property permits you to define the default value that
will appear in the component. At a minimum, this property
should be set to a blank string. It looks strange to the user if the
component name (e.g. Edit1) appears by default.

However, these properties provide only limited validation of
data. In most cases, the issue reduces to one of data type.
Specifically, data entered into an Edit component is necessarily
text. However, you will often use an Edit component to permit
the user to enter a value of a particular data type, such as a num-
ber, an integer, a date, or a time. When the data you want the
user to enter into a field is more restrictive than text, it’s up to
you to verify that the entered data conforms to the desired type.

There are a number of events to which you can attach your Edit
component validation code. Some of these require more work
than others. For instance, if you add your validation code to
either the OnKeyDown or OnKeyUp event handlers, you must
evaluate the entered data after each keystroke. In many cases, this
is a lot of work. For example, if the Edit component is used to
get a date from a user, your code must account for the fact that
the value will not conform to a date value until the user enters
the last character.

I have found it easier to validate data when the user attempts to
leave the field, or before the value in the Edit component is used
by another part of the program. For example, if a button contains
code in its OnClick event handler that will generate a query based
on a value in an Edit component, the OnClick code should first
validate the Edit component’s data. Likewise, if the validation
needs to be performed before a form is closed, the validation code
can be called from the form’s OnCloseQuery event handler (and its
CanClose parameter can be set to False if invalid code is found).

The specific technique you employ to validate the Edit compo-
nent depends on the type of validation required. Since most of
the time the validation relates to the data type of the entered
text, a try...except statement is the most useful. In the try block
you attempt to cast the Text property of the field to the particu-
lar data type.

If the value cannot be cast to the specified value, Delphi will
generate an exception. You trap this exception in the except
block, and respond accordingly by displaying a message in a sta-
tus bar (usually a Panel component), or by raising a custom
exception (displaying an error message you’ve defined).

Even if the Text property of the Edit object can be successfully cast
to a date type, it is still possible that the value is not valid based on
business rules. For example, you may not want to permit the user
to enter a date later than today’s date. When an unacceptable date
is detected by your code, you can explicitly raise an exception.
This can permit the rule violation to be handled by the same
exception handler that processes the illegal assignment exception.

The following example demonstrates how to validate a field.
Because this type of validation is often called from more than
Delphi INFORMANT ▲ 31

DBNavigator
one event, this code will be
placed in a function. This
allows it to be called from
any event handler that must
validate the field. (The
specifics of creating a new
function are not discussed
here. Likewise, exception
handling and exception cre-
ation is demonstrated without
going into detail. If you need
additional information about
these topics, please refer to the Delphi User’s Guide.)
Begin by adding a Label component and an Edit component to
your form. Change the Caption property of the Label component
to D&ate:, set the FocusControl property to Edit1, and delete Edit1
from the Text property (see Figure 4).

Next, select the Edit component and set its MaxLength property
to 10 (10 characters is sufficient to permit the entry of a date).
Next, press @ to display the unit. Move your cursor to the
line just above the final statement in the unit (end.), and enter
the ValidateDate function shown in Figure 5.

The ValidateDate function takes a single parameter — an Edit
component. This permits you to call this validation code from
various routines, passing the name of a specific Edit compo-

Figure 4: Adding an Edit compo-
nent to the example form.
AUGUST 1995

function TForm1.ValidateDate(TheField: TEdit): Boolean;
var

NewValue: TDateTime;
begin

{ Initialize the return value. }
Result := True ;
{ Do not evaluate if the field is blank. }
if TheField.Text = '' then

Exit;
try

{ Cast the field’s text to a date. }
NewValue := StrToDate(TheField.Text);
{ The value is a date. Perform any additional tests. }
if NewValue < StrToDate('1/1/95') then

raise EEarlyDate.Create('Date cannot be before 1995')
else

{ Valid date. Modify the value of ComboBox1.}
ComboBox1.ItemIndex := DayOfWeek(newValue)-1;

except
on EEarlyDate do

begin
Result := False;
raise;

end;
else

begin
Result := False;
raise Exception.Create('Invalid date');

end;
end;

end;

Figure 5: This custom ValidateDate function uses a try...except block
to validate a date value.
nent to validate. If the date in that Edit component is found
to be invalid, an error message is displayed and ValidateDate
returns the value False. Otherwise, the function returns the
value True.

As an additional demonstration, this code also sets the value
of the Day of Week ComboBox after a valid date has been
entered. This is done by modifying the ComboBox’s
ItemIndex property. However, notice it’s necessary to subtract
one from the DayOfWeek function. This is because List com-
ponents have a zero-based index, while the DayOfWeek func-
tion returns a value from one to seven. If you want to use the
ValidateDate function as a generic date validation function,
you would remove the following statement:

ComboBox1.ItemIndex := DayOfWeek(newValue)-1;

We’re not finished implementing the ValidateDate function. It’s
still necessary to declare the function in the interface part of the
unit. Add the header of the function (without the TForm1 com-
ponent name) to the type declaration.

It is also necessary to declare the exception EEarlyDate. This
must be done before the form declaration. When you are
through the type declaration should look like this:

type
EEarlyDate = class(Exception);
TForm1 = class(TForm)

Label1: TLabel;
ComboBox1: TComboBox;
Edit1: TEdit;
Label2: TLabel;
function ValidateDate(TheField: TEdit): Boolean;

private
{ Private declarations }

public
{ Public declarations }

end;

All you need to do now is call this function from the OnExit
event handler for the Edit component. Return to the form,
select the Edit component, and double-click OnExit on the
Events page of the Object Inspector. Modify the Edit1Exit
event handler to look like this:

procedure TForm1.Edit1Exit(Sender: TObject);
begin

ValidateDate(Edit1);
end;

Compile the project, save it as VALIDATE.DPR, and exit Delphi.
Then select File | Run from Windows Program Manager and
enter the name of the executable project (include the path and the
name VALIDATE). Once the form is running, move to the Date
field and enter an invalid date. Then press F to exit the field.
This will produce an exception resembling that in Figure 6. Move
back to the Date field and enter a valid date. This time, the value
displayed in the Day of Week field will be updated.

Note: To see how the exception appears to the user, it is best
to run this program from the Program Manager, rather than
Delphi INFORMANT ▲ 32

DBNavigator

Figure 6: The code in Figure 5
produces this exception.
from the Delphi IDE. If you
run the program from the
Delphi IDE, and if Break on
Exception is enabled on the
Preferences page of the
Environment Options dialog
box (the default setting), each
exception puts the program
into the Debugger. To see the
exception the user sees, you
must “step over” the excep-
tions created by Delphi as
well as those you raise.
Conclusion
It is often necessary to ensure that data entered by users con-
forms to certain parameters. Here we have considered how to
perform this task with fields not associated with table data.
While some of these components required no code to ensure
valid data, Edit components do.

In the next installment, we’ll look at techniques for performing
field-level and record-level validation with data-aware controls. ∆

The demonstration project referenced in this article is available on the
1995 Delphi Informant Works CD located in
INFORM\95\AUG\CJ9508.
AUGUST 1995 Delphi INFORMANT ▲ 33

Cary Jensen is President of Jensen Data Systems, Inc., a Houston-based database
development company. He is a developer, trainer, author of numerous books on data-
base software, and Contributing Editor of Delphi Informant. You can reach Jensen Data
Systems at (713) 359-3311, or through CompuServe at 76307,1533.

AUGUST 1995

Show Your Colors
Creating Visual Effects with Delphi’s Canvas Property

Sights and Sounds
Delphi / Object Pascal

By David Faulkner

Figure 1: The color triangle program
One of the many nice things about programming in Windows is its
device independence. When you write information to the screen or
printer, your program does not need to worry about loading, linking,

or calling device drivers that may differ from machine to machine.

The program in this article demonstrates device independence by creating the color triangle shown
in Figure 1. Try this program with different video drivers, resolutions, and number of colors. By
varying some of the calculations, you can create some spectacular screens.
Writing to a Form’s Canvas
Delphi makes it easy to place text on a form. You just place a Label component on a form and sup-
ply the appropriate caption. Because this is so easy, you may not be aware that you can program-
matically place text on a form without using a Label component. For example, create a new form
and place a Button component on it. In the button’s OnClick method, write the following code:

Form1.Canvas.TextOut(10,10,'Hi Mom');

Now run the form and click the button. Assuming your button isn’t in the wrong place, “Hi
Mom” should appear in the screen’s upper-left corner.
 in action.
Each form you create has a Canvas property of type TCanvas. With
the form’s canvas you can easily draw lines, circles, boxes, and text.
The Canvas property encapsulates the Windows device context. If you
are not already convinced that Delphi is the “cat’s meow”, the Canvas
property should convince you. If you had to write the “Hi Mom”
code above using just the Windows API, you would need to do quite
a bit of work creating and destroying pens and brushes.

The form’s canvas also gives you access to the individual pixels on a
form. This is done through the Pixels property:

property Pixels[X, Y: Longint]: TColor;

X and Y represent the horizontal and vertical canvas coordinates of a
pixel and TColor represents the pixel’s color. This property is both
read and written at run-time so you can either set or determine the
pixel’s color.
Delphi INFORMANT ▲ 34

Sights and Sounds
For a quick example of the Pixels property, create a form and
enter the following code into the form’s OnClick method:

procedure TForm1.FormClick(Sender: TObject);
var
x,y : integer;

begin
for x:=0 to Form1.ClientWidth do

for y:=0 to Form1.ClientHeight do
Form1.Canvas.Pixels[x,y] :=

$02000000 + Trunc($ffffff * Random);
end;

Run the form and click on it. The form should fill from left to
right with random colors (not exactly exciting, but it gets better).

The TColor value of the Pixels property determines the color
of a pixel. Its type is Longint so it is four bytes long. The first
byte determines how the color is rendered on a palette. The
next three bytes represent blue, green, and red, respectively. A
value of zero for any of these colors means that color is not
displayed at all, while a value of $FF (that’s Delphi’s hex
notation for 255) means full intensity of that color. For
example $02FF0000 is blue, $0200FF00 is green,
$020000FF is red, $02000000 is black, and $02FFFFFF
(all colors) is white.
The Color Triangle
To create the color triangle, create a new form and call the
DrawTriangle method (shown in Listing Three on page 38) from
either a button or menu choice. Note that this code is more
complicated than it needs to be just to draw a triangle. The
complexity is there so the user can configure the application to
create those cool screens (which we’ll see a bit later).

First, the code in DrawTriangle determines the coordinates of
the triangle’s three points. The triangle’s height is set to the
form’s height minus two pixels to give a one pixel border at
the top and bottom of the form. The width is a bit more
complicated to calculate, and you might need to brush up on
your trigonometry and algebra skills to see where the formula
comes from.

The Pythagorean theorem states the square of the hypotenuse
of a right triangle is equal to the sum of the squares of the
other two sides:

Here h is the length of the hypotenuse, and y is the height of
the triangle, and we are looking for x, the width of the trian-
gle. Since the color triangle is an equilateral triangle (all its
sides are of equal length), we will work with the right triangle
created by the line y. Since the line y bisects the bottom of
the triangle, we know that:

x h=
1

2

h x y2 2 2= +
AUGUST 1995
By substituting this equation into the above Pythagorean equa-
tion, and doing some algebra we have:

In Object Pascal code this becomes:

const

Sqrt3=1.732; { The square root of 3. }

begin

with Form1 do

begin

intTriangleHeight := ClientHeight-2;

IntTriangleWidth := Trunc(2*intTriangleHeight/Sqrt3);

Note here that the square root of three is declared as a constant
named Sqrt3. This is because the square root of three is used in
a number of places in the program including once in a loop.
There is no need to slow down the program by making the com-
puter do a calculation each time Sqrt3 is needed.

With the height and width of the triangle determined, it’s a sim-
ple matter to calculate the coordinates of the triangle’s three ver-
tices. A pair of nested for loops is used to visit every pixel in the
triangle as follows (this code is a simplified version):

for y:= intTopY to intTriangleHeight do
begin

for x:=intTopX-Trunc(y/Sqrt3) to intTopX+Trunc(y/Sqrt3) do
begin

{ Statements to enter color screen pixels }
end;

end;

The intTopY and intTopX variables represent the x and y coordi-
nates of the triangle’s top vertex. Notice the use of the Sqrt3
constant again. This time the reader must perform the necessary
algebra to calculate the start and end of the x loop.

Within the nested loop, the objective is to vary the intensity of each
color in proportion to the distance from that color’s vertex. The dis-
tance between two points on a plane is calculated with this formula:

d x x y y= − − −2 1

2

2 1

2

h y=
2

3

h y2 24

3
=

3

4
2 2h y=

h h y2 2 21

4
= +

h h y2 2 21
2= +()
Delphi INFORMANT ▲ 35

Sights and Sounds

Figure 2: The configuration dialog box.
In code this becomes:

longBlueDistance := Trunc(Sqrt(Sqr(intTopX-x) +
Sqr(intTopY-y)))

Since the blue vertex is the top vertex, the intTopX and
intTopY variables are used in this calculation. The Sqrt func-
tion returns a real number, so the Trunc function is used to
convert the real number into an integer that can be assigned
to the longBlueDistance variable. Similar calculations are done
for each color.

With the distance known, the amount of blue is proportioned
with the following code:

realBluePart := ((intTriangleWidth-longBlueDistance) /
intTriangleWidth);

longBlue := Trunc($ff*realBluePart)*$ff*$ff;

The realBluePart variable is assigned a fraction between zero and
one since the minimum BlueDistance is zero and the maximum
BlueDistance is equal to the length of any side of the triangle.
This fraction is then multiplied by 255 to obtain the actual blue
intensity that will be used to color a pixel. Since the blue part of
the TColor type is the second byte, the number is multiplied by
255 * 255 to shift it into its proper position.

Actually, the code would be faster and more accurate if it read:

longBlue := Trunc($ff*realBluePart) shl 16

The shift left operator, shl, shifts the value 16-bits (two bytes)
to the left to move it into the proper position. The problem
with this method is that it removes some of the cross color
interference resulting in the various screens you’ll create at the
end of the article.

After each color is calculated, it can be used to assign a color to a
screen pixel as follows:

Canvas.Pixels[x,y] := longBlue + longGreen + longRed;

That’s it for creating the color triangle. Download the code or
type it in (it’s not that long) and try it.
Configuring the Color Triangle
While writing the original color triangle code, I made a number
of coding mistakes that yielded some wild results. The results
were odd enough that I decided to make the program user-con-
figurable so the user could recreate the same effects. I did this by
creating the dialog box shown in Figure 2.

Adding a configuration dialog box to this or any other pro-
gram is relatively easy, but there are a few things you must
know. The configuration dialog box must communicate with
the main form.

One way of doing this is with global variables that both the
main form and configuration dialog box can access. Global vari-
AUGUST 1995
ables that are meant to be accessed by any other program using
a unit should be declared in the interface section of the unit:

interface

uses
type

var
Form1 : TForm1;
byteBlueOption : byte;
byteRedOption : byte;
byteGreenOption : byte;
boolFullScreen : Boolean;
boolColorLimit : Boolean;
boolPaletteCheck : Boolean;

implementation

Before any of these variables can be used, they must be initial-
ized. Since there is no guarantee the user is going to configure
the program before they initiate the drawing process, it’s a good
idea to initialize the variables in the form’s Create method:

procedure TForm1.FormCreate(Sender: TObject);
begin

byteBlueOption := 0;
byteGreenOption := 0;
byteRedOption := 0;
boolFullScreen := False;
boolColorLimit := True;
boolPaletteCheck := True;

end;

To give the user access to the configuration dialog box, either a
menu choice or a button can call this code:

procedure TForm1.Config1Click(Sender: TObject);
begin

ConfigDialog.ShowModal;
end;

Note the unit that creates the configuration dialog box must be
included in the main form’s uses clause for the above code to
compile. The ShowModal function shows the passed form and
insists the user close that form before continuing.
Getting Around a Circular Reference
The first problem the configuration dialog box faces is gaining
access to the main form’s global variables. It seems logical to accom-
Delphi INFORMANT ▲ 36

Sights and Sounds
plish this by placing the main form’s unit in the dialog box’s uses
clause. If you try this, Delphi will respond with the “Error 68:
Circular Unit Reference” when you compile. This happens because
the main form uses the dialog box’s unit, which in turn uses the
main form’s unit, which in turn uses the dialog box’s unit, etc.

To work around this, the main form’s unit should be added to
the implementation part of the dialog box’s unit. Declarations
made in the implementation part of a unit are private and there-
fore cannot be seen by other units.

With the main form’s unit (Coloru.PAS in this example) available
to the dialog box, access to the main form’s global variables is easy:

FullScreenButton.Checked := Coloru.boolFullScreen;
TriangleButton.Checked := not Coloru.boolFullScreen;
ColorLimitButton.Checked := Coloru.boolColorLimit;
PaletteCheckButton.Checked := Coloru.boolPaletteCheck;

This code is used to initialize the values of the various components
in the configuration dialog box. When the dialog box is closed, simi-
lar code is used to set the values of the main form’s global variables.
Figure 3 (Top): The Compiler page of the Delphi Project Options dia-
log box. Figure 4 (Middle): Fun with colors. Use these settings to
Compiler Directives
You may have noticed the following two lines of code at the
beginning of the Coloru unit:

{$R-}
{$Q-}

Although these look like comments, they do a lot more. Any com-
ment beginning with a dollar sign ($) tells Delphi to do something
special at compile time. The{$R-} compiler directive tells Delphi to
turn off range checking. This quickens the compile and allows the
math in the DrawTriangle method to go out of range without caus-
ing a run-time exception. The{$Q-} compiler directive tells Delphi
to turn off overflow checking in integer math. Again, this speeds
compilation and allows the integer math in the DrawTriangle
method to overflow during run-time without causing exceptions.

These two options can be set interactively on the Compiler
page of the Project Options dialog box (see Figure 3), but it’s
better to embed the compiler directives in source code. This
allows the code to be compiled on other machines without
having to check the compiler settings.

One other compiler directive you might want to play with is {$N-}.
This tells Delphi to do real number math in software instead of
using the floating point coprocessor on your machine. If you use
this directive, you will notice a big slowdown in the program (unless
of course, your machine doesn’t have a math coprocessor).
create the color triangle as shown. Figure 5 (Bottom): To generate
this “field of circles”, set the Red, Green, and Blue radio buttons
to: S. Root, S. Root, and Nothing (respectively). Deselect Color
Limit, check Palette Check, and select Full Screen.
Conclusion
So have some fun. Use the configuration dialog box to produce
the special effects shown in Figures 4, 5, 6, and 7.

Delphi gives the programmer quick and easy access to the form’s
canvas and you can experiment with various lines, boxes, pixels,
AUGUST 1995
colors, and fonts. This may seem like a frivolous exercise, but
when it comes time to write your components you’ll use the
skills learned here to write custom OnPaint code. ∆
Delphi INFORMANT ▲ 37

Figure 6 (Top): This “super nova” is created by setting Red to
Square, and Green and Blue to S. Root. Color Limit and Palette
Check are not checked. Figure 7 (Bottom): To get this “cosmic
egg” set Red and Green to Nothing and Blue to S. Root. Deselect
Color Limit and Palette Check.

Sights and Sounds
The demonstration project referenced in this article is available on
the 1995 Delphi Informant Works CD located in
INFORM\95\AUG\DF9508.
AUGUST 1995

David Faulkner is a developer with Silver Software in Kula, Hawaii. He is also
Contributing Editor to Paradox Informant, and co-author of Using Delphi: Special
Edition (Que, 1995). Mr Faulkner can be reached at (808) 878-2714, or on
CompuServe at 76116,3513.
Begin Listing Three — Coloru.PAS

{$R-}
{$Q-}

unit Coloru;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls, Forms, Menus, Config;

type
TForm1 = class(TForm)

MainMenu1: TMainMenu;
Config1: TMenuItem;
Draw1: TMenuItem;
procedure Config1Click(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure DrawTriangle;
procedure Draw1Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form1: TForm1;
byteBlueOption: Byte;
byteRedOption: Byte;
byteGreenOption: Byte;
boolFullScreen: Boolean;
boolColorLimit: Boolean;
boolPaletteCheck: Boolean;

implementation

{$R *.DFM}

procedure TForm1.DrawTriangle;
var

{ Coordinates of top and bottom left of triangle }
intTopX,intTopY,intLeftX,intLefty,
{ Coordinates of bottom right of triangle }
intRightX,intRightY: Integer;
{ Height and width of triangle }
intTriangleHeight,intTriangleWidth: Integer;
{ Distance current position to triangle point }
longBlueDistance,

longGreenDistance,longRedDistance: Longint;
{ Fraction of ColorDistance to MaxDistance }
realBluePart,realGreenPart,realRedPart: Real;
{ Color of pixel to be placed on screen }
longNewColor: TColor;
{ Amount of RGB for each color }
longRed,longGreen,longBlue: Integer;
{ First in last pixel in row of triangle }
intXBegin,intXLimit,
{ First and last pixel in col of triangle }
intYBegin,intYLimit: Integer;

{ Loop counters }
x,y: Integer;

const
{ The Square Root of 3 }
Sqrt3=1.732;

begin
with Form1 do

begin
{ One pixel space on top and bottom }
intTriangleHeight := ClientHeight-2;
{ Get out your trig book }
Delphi INFORMANT ▲ 38

Sights and Sounds

intTriangleWidth := Trunc(2*intTriangleHeight/Sqrt3);
{ Top is half way across screen }
intTopX := ClientWidth div 2;
{ and one pixel down }
intTopY := 1;

intLeftX := (ClientWidth - intTriangleWidth) div 2;
intLefty := intTopY+intTriangleHeight;
intRightX := (ClientWidth + intTriangleWidth) div 2;
intRightY := intTopY+intTriangleHeight;

if boolFullScreen then
begin

intYLimit := ClientHeight;
intYBegin := 0;

end
else

begin
intYLimit := intTriangleHeight;
intYBegin := intTopY;

end;

for y:=intYBegin to intYLimit do
begin

if boolFullScreen then
begin
intXLimit := ClientWidth;
intXBegin := 0;
end

else
begin
{ Get out that trig book again }
intXBegin := intTopX-Trunc(y/Sqrt3);
intXLimit := intTopX+Trunc(y/Sqrt3);
end;

{ For each pixel in this row }
for x:=intXBegin to intXLimit do
begin

case byteBlueOption of
0: longBlueDistance := Trunc(Sqrt(Sqr(intTopX-x) +

Sqr(intTopY-y)));
1: longBlueDistance := Sqr(Sqr(intTopX-x) +

Sqr(intTopY-y));
2: longBlueDistance:= Abs(Sqr(intTopX-x) +

Sqr(intTopY-y));
end;

realBluePart := ((intTriangleWidth-longBlueDistance) /
intTriangleWidth);

longBlue := Trunc($ff*realBluePart)*$ff*$ff;

if boolColorLimit then
longBlue := longBlue and $00ff0000;

case byteGreenOption of
0: longGreenDistance := Trunc(Sqrt(Sqr(intLeftX-x) +

Sqr(intLefty-y)));
1: longGreenDistance := Sqr(Sqr(intLeftX-x) +

Sqr(intLefty-y));
2: longGreenDistance := Abs(Sqr(intLeftX-x) +

Sqr(intLefty-y));
end;
AUGUST 1995
realGreenPart := ((intTriangleWidthlongGreenDistance)/
intTriangleWidth);

longGreen := Trunc($ff*realGreenPart)*$ff;

if boolColorLimit then
longGreen := longGreen and $0000ff00;

case byteRedOption of
0: longRedDistance := Trunc(Sqrt(Sqr(intRightX-x) +

Sqr(intRightY-y)));
1: longRedDistance := Sqr(Sqr(intRightX-x) +

Sqr(intRightY-y));
2: longRedDistance := Abs(Sqr(intRightX-x) +

Sqr(intRightY-y));
end;

realRedPart := ((intTriangleWidthlongRedDistance)/
intTriangleWidth);

longRed := Trunc($ff*realRedPart);

if boolColorLimit then
longRed := longRed and $000000ff;

longNewColor := longBlue+longGreen+longRed;

if boolPaletteCheck then
longNewColor := longNewColor and $02ffffff;

Canvas.Pixels[x,y] := longNewColor;
{ End of for x loop }
end;

{ End of for y loop }
end;

{ End of 'with Form1 do begin' }
end;
{End of procedure}
end;

procedure TForm1.Config1Click(Sender: TObject);
begin

ConfigDialog.ShowModal;
end;

procedure TForm1.FormCreate(Sender: TObject);
begin

byteBlueOption := 0;
byteGreenOption := 0;
byteRedOption := 0;
boolFullScreen := False;
boolColorLimit := True;
boolPaletteCheck := True;

end;

procedure TForm1.Draw1Click(Sender: TObject);
begin

DrawTriangle;
end;

end.

End Listing Three
Delphi INFORMANT ▲ 39

AUGUST 1995

Delphi on the Web
A Guide to Delphi Resources on the World-Wide Web

On-Line
Delphi / World-Wide Web / HTML

By Rand McKinney
U nless you’ve been under a rock for the last year, you’ve at least heard
of the world-wide web (WWW), a graphical, hypertext-based interface
to the Internet. If you have a “browser” tool such as Netscape or

Mosaic (both are available free), and a proper connection to the Internet, you
can access a virtually limitless array of information provided on web sites or
“pages” by universities, corporations, and individuals.

In recent months, a number of Delphi-centric web pages have appeared. Created by Delphi pro-
grammers, consultants, and writers, these web pages provide a wealth of useful information that’s
just a few mouse clicks away. Many sites have Delphi demonstration applications and components
available for download for free, or as shareware. Some provide forums for questions and answers on
Delphi programming, and others are simply marketing vehicles for Delphi application developers.
These web sites literally span the globe: there are Delphi web pages on servers in Australia, Sweden,
Poland, Germany, and across the United States.
Web Pages
The following is an incomplete list of some of the best web pages devoted to Delphi. Each
page has a URL (Uniform Resource Locator) that is essentially the WWW address of the page.
You can type them or use the HTML file provided with this article (see end of article for
details). As of this writing, these URLs are accurate. However, the web is dynamic by nature
so some may have changed.
Official Web Pages
The following are the only official Borland web pages.

The Official Borland Delphi Web Page
http://www.borland.com/Product/Lang/Delphi/Delphi.html

This page includes a Delphi fact sheet, news, and press releases from Borland, downloadable documen-
tation in Adobe Acrobat format, lists of Delphi educational resources, and other Borland information.

Borland FTP Server on the Web
ftp://ftp.borland.com/pub/ftpmenu.htm

The Borland FTP (File Transfer Protocol) server, presented in living HTML for your browsing
pleasure. This is the official place to download a variety of Delphi-related files and other
Borland products. If you don’t have a web browser, you can access the same files at ftp.bor-
land.com.
Delphi INFORMANT ▲ 40

On-Line
Delphi Technical Support Home Page
http://loki.borland.com:8080/

The Delphi technical support web page, including Delphi questions
and answers, links to the Borland Database Engine (BDE),
ReportSmith, SQL Links web pages, and other relevant information.
Commercial Sites
The following web pages are maintained by companies or indi-
viduals for commercial reasons. Some require payment for their
components, books, or applications, but many have freeware and
shareware available for download.

InfoPower Component Library
http://www.webcom.com/~wol2wol/infopowr.html

InfoPower, from Woll2Woll Software, is a library of Delphi data-
aware components that are automatically installed into Delphi’s
Component Palette. [InfoPower is reviewed on page 45.]

The Coriolis Group’s Delphi Explorer
http://www.coriolis.com/coriolis/whatsnew/delphi.htm

Excerpts from the book Delphi Programming Explorer, Delphi arti-
cles, commercial and shareware Delphi software, etc. are available.

Delphi RADical Application Development
http://super.sonic.net/ann/delphi/

This page of components enables you to use Delphi for web
server CGI programming. It includes descriptions, demonstra-
tions, and downloadable components. There’s also a link to 32
downloadable freeware components created by Michael Ax.

Delphi TAutoButton Component
http://www.widewest.com.au/delphi/

A Delphi component built by a Delphi programmer with
AeroSoft in Australia.

The City Zoo
http://www.mindspring.com/~cityzoo/cityzoo.html

Tips and tricks, Delphi announcements, components, etc., from
a Delphi consultant in Florida.

CIUPKC Software
http://www.webcom.com/~kilgalen/welcome.html

CIUPKC Software (pronounced “soo-pack”) is a small software
development company specializing in software built with Delphi.
Their page has a few shareware components, and lots of links to
other sites and software.
Non-commercial Sites
The following web pages are maintained by individuals for their
own reasons — primarily out of sheer love for Delphi and its
capabilities. These are always informative, sometimes amusing,
and occasionally quirky.

Delphi FAQ
http://www.mhn.org/delphi.faq

Comprehensive, but unofficial, Delphi Frequently Asked
Questions list.
AUGUST 1995
Delphi Bug-List Web Page
http://www.cybernetics.net/users/bstowers/delphi-bugs.html

Unofficial list of known bugs and work-arounds in Delphi,
maintained by a Delphi programmer in North Carolina.

Delphi Hacker’s Corner
http://tmpwww.electrum.kth.se/~ao/DHC/

An excellent web page maintained by Anders Ohlsson in
Sweden. It includes tips and tricks, demonstrations, a list of
major Delphi users’ groups, and European mirror sites for
Delphi FTP resources.

The Delphi Station
http://www.teleport.com/~cwhite/wilddelphi.html

With dozens of shareware and freeware Delphi components,
there’s an incredible amount of useful information, examples,
and other Delphi-related stuff on this page.

Dave’s Delphi Destination
http://vislab-www.nps.navy.mil/~drmcderm/delphi.html

Numerous valuable resources, including The Unofficial Delphi User’s
Newsletter (in Windows on-line help format), calendar components,
and the famous TSmiley component, are available on this page.

Michael’s Delphi Home Page
http://linux.rz.fh-hannover.de/~holthoefer/delphi.html

Lots of components, demonstrations, and other good stuff.

The Delphi Super Page
http://sunsite.icm.edu.pl/archive/delphi/

Straight from Poland: Warsaw University’s Sunsite has a
Delphi page loaded with demos, tips and tricks, shareware and
freeware components.

Annotated Bibliography of Delphi Articles and Books
http://www.iscinc.com/dugbib.html

A list similar to this one, but for printed materials on Delphi.
General Pascal Pages
Turbo Pascal Programmer’s Guide
http://www.cs.vu.nl/~jprins/tp.html

A comprehensive list of web sites and resources related to the Pascal
language, maintained by a Pascal programmer in The Netherlands.

The Perkins Pascal Page
http://www.iii.net/users/rexkp.html

This page provides current information on BugSlay, the Pascal
Postmortem Debugger, as well as links to other Pascal related
information.
User Group Sites
There are many Delphi user groups around the world. Anders
Ohlsson in Sweden maintains a comprehensive list of them at
the following URL:

http://tmpwww.electrum.kth.se/~ao/DHC/dug.html

Some of the user groups even have their own web pages.
Delphi INFORMANT ▲ 41

On-Line
New York Delphi Users’ Group
http://www.iscinc.com/nydug.html

North Bay Delphi Special Interest Group
http://Super.Sonic.Net/delphisig/index.html

Salt Lake City Delphi Users’ Group
http://www.xmission.com/~uldata/delphi.html
Discussion Forums and Newsgroups
Delphi WWW Forum
http://www.pennant.com/delphi/hn/dconn.html

A newsgroup-like forum in HTML format for Delphi users.

comp.lang.pascal

The Usenet newsgroup for discussion of Pascal-related topics,
including Delphi.

alt.comp.lang.borland-delphi

Alternative-hierarchy Usenet newsgroup for discussion of Delphi. ∆

The HTML referenced in this article is available on the 1995 Delphi
Informant Works CD located in INFORM\95\AUG\RM9508.
AUGUST 1995 Delphi INFORMANT ▲ 42

C. Rand McKinney is a Senior Technical Writer for the Delphi team at Borland
International. Previously, he helped to document the InterBase 4.0 Workgroup Server
and client tools. He has also worked as an AI researcher and a space systems analyst.
He can be reached at rand@borland.com.

or the things we have to learn before doing them, we learn by doing them.

— Aristotle, 384-322 BC

At Your Fingertips
B Y D A V I D R I P P Y

Delphi / Object Pascal

F

Figure 1:
This “menu
screen” was
created in
Corel
DRAW!

Figure 2:
Stretch the
Shape
objects to
cover the
area that
you need to
trap for
mouse
events.
How can I create “hot regions” on my form?
A common way of presenting options to a multimedia applica-
tion user is to display an attractive bitmap in place of the usual
Windows menus and buttons. For example, the menu screen
shown in Figure 1 consists of a single Image object created in
CorelDRAW! that displays three pictures representing different
areas of the system the user can access.

The problem is, we need to be able to detect when the user
clicks within the areas of the three pictures. For example, we
must load the Recreation form when the user clicks on the
man playing golf. To do this, we can use the TShape compo-
nent and define an invisible “hot region” around the golfer.
This will enable us to detect when the user clicks within that
area. In essence, these hot regions become our “buttons” and
can respond to mouse events such as OnMouseDown and
OnMouseUp.

As demonstrated in Figure 2, create a shape object on your
form and stretch it until it covers the region that you want to
trap for mouse events. You can change the Shape property of
the shape object to better fit this region. (Note that the icon
representing the Shape component is a bit misleading; you can’t
create a triangle.) Finally, change the BrushStyle property to
bsClear and the PenStyle to psClear. This will cause our shape to
be invisible at run-time. Create as many hot regions as needed
for your screen.

As mentioned earlier, the all-important benefit of creating these
regions is they provide you with several events you can trap for
in your program including the MouseDown event. Also, it’s likely
you’ll attach code for loading additional forms, displaying infor-
mation, playing a sound bite, etc. — D.R.
How can I create a simple glossary system for a memo field?
For applications that rely heavily on terminology that may be
unfamiliar to the user, it’s often a good idea to include a glossary
system to provide definitions. If you’re on a shoestring budget,
AUGUST 1995
here’s a quick and dirty way to give your users the information
they need with a minimum of code.

Figure 3 shows a form with a TMemo component containing
text that explains some highly technical information. To see the
definition of a word within the memo field, the user simply
highlights the word and clicks on the Definition button. A dia-
log box with the definition of the selected word will be dis-
played. For example, in Figure 4 the user is unsure of the mean-
ing of “life”. However, by clicking the Definition button, the
meaning of life is made perfectly clear.
Delphi INFORMANT ▲ 43

Figure 7: This
code is attached
to the OnClick
event of the
Definition
button.

Figure 8: This form copies a record from
Table1 into Table2.

Figure 3: You
can highlight
a word in
Windows by
double-click-
ing on it.

Figure 4:
Pressing the
Definition
button will
display the
word’s
definition.

At Your Fingertips
The first step in implementing the glossary system is to create
a table called GLOSSARY.DB with the structure shown in
Figure 5. In this table, you’ll store all the words and their
meanings for the application. As shown in Figure 6, the sam-
ple table contains the definitions for several words including
“LIFE”. It’s important to capitalize each letter of the word in
the WORD field for the IndexFields command to work prop-
erly. If you’re using a Paradox table, you can automate this
task by creating a picture of *& for the WORD field (see
Figure 5 again).
Field Name Type Size Key

Word A 20 *

Definition A 60

Figure 5: Table
structure for the
GLOSSARY table.

Figure 6: Define as
many words as needed
for your application.

David Rippy is a Senior Consultant with Ensemble Corporation,
specializing in the design and deployment of client/server database
applications. He has contributed to several books published by Que,
and is a contributing writer to Paradox Informant. David can be
reached on CompuServe at 74444,415.
All the code necessary for the glossary system is located in the
OnClick event of Button1 as displayed in Figure 7. When the
user clicks on the Definition button, the table object TGlossary
is immediately placed in a kind of “search mode” by calling the
EditKey method. The word selected by the user is then convert-
ed to upper-case and used to specify the value we want to
locate in the WORD column via the FieldByName command.
Finally, the GoToKey method will attempt to locate the selected
word. If it is found, the definition of the word is displayed in a
dialog box. If the selected word is not contained in the GLOS-
SARY table, a dialog box informs the user that no definition is
available for the highlighted word. — D.R.
AUGUST 1995
How can I easily copy a record from one table to another?
Here’s a simple way to copy a single record from one table to anoth-
er, with only a few lines of code. Figure 8 shows a form containing
two table objects, named Table1 and Table2, and their correspond-
ing DataSource and DBGrid components. This example will copy
the current record from Table1 into Table2. Further, we will instant-

ly see the new record
appear in the DBGrid of
Table2 when the Copy
Record button is pressed.

All the code for copying a
record into a destination
table with an identical
record structure is con-
tained in the OnClick event
of the Copy Record button
as shown in Figure 9. Most

of the important code is contained within the for loop. Basically, it
steps through each field in the current record of Table1 and assigns
their values to the same set of fields in Table2. Just make sure your
tables are open, either interactively or programmatically, before
attempting to copy.
Delphi INFO
Figure 9: This
code is attached
to the OnClick
event of the
Copy Record
button.
Note: For simplicity, there is no exception handling for duplicate
records — you must only copy one record at a time. In a real
application, you would want to handle key violations more
gracefully. — D.R. ∆

The demonstration forms referenced in this article are available on
the 1995 Delphi Informant Works CD located in
INFORM\95\AUG\DR9508.
RMANT ▲ 44

InfoPower
Woll2Woll’s VCL Components for Database Developers

New & Used
b y j o s e p h c . f u n g
I f you’ve been waiting for a third-party vendor to
supply an alternative to Delphi’s built-in data
access components, your wait is over. Woll2Woll

Software has released InfoPower, a comprehensive
collection of native VCL components for database
developers. InfoPower consists of 15 data-aware
components that add powerful new capabilities to
Delphi, including a sophisticated data grid,
enhanced DataSet and DataSource components, fil-
tering capabilities, incremental searching, expanding
memos, editable lookup combo-boxes, and a set of
standard and user-defined search dialog boxes.

Users familiar with the capabilities of Paradox for Windows’ fil-
ters and TableFrame object will appreciate this software because it
brings similar capabilities to Delphi. InfoPower’s components are
also optimized to account for client/server operations so you can
access remote data with minimal overhead. In addition, applica-
tions you create with InfoPower can be distributed royalty-free.
Installing InfoPower
Installing InfoPower on your system is easy if you follow the
instructions in the user manual. InfoPower comes with the typical
Windows-hosted installation program that copies the necessary files
to your hard disk. Once installed, you’re instructed to complete a
series of manual steps to create an alias for the optional demonstra-
tion programs, install the components into Delphi’s component
palette, and merge the InfoPower on-line help into Delphi.

For those tempted to skip the user manual and dive right into
the sample applications, be sure to follow these steps or you
might have trouble running the demonstration files. These files
require you to create an alias called InfoDemo that points to the
directory containing the sample tables.
AUGUST 1995
After you are finished installing InfoPower, you can immediately
begin using its components to build a database application.
Enhanced DataSet and DataSource Controls
At the core of InfoPower are three new data access components:
TwwDataSource, TwwTable, and TwwQuery. (There are actually
four if you include a new TwwQBE component, but we’ll ignore
it for now.) These new components are enhanced versions of the
built-in TDataSource, TTable, and TQuery components. They
build upon the basic VCL versions by adding new properties
and methods. Many of InfoPower’s visual and non-visual com-
ponents rely on the extended functionality provided by these
new components to work. The TwwDataSource, TwwTable, and
TwwQuery components are derived directly from their Delphi
counterparts and are 100% backward compatible. Because of
this, you can substitute the InfoPower versions directly into your
existing forms, including the ones created by the Form Expert.

While TwwDataSource and TwwQuery serve mainly to interface
with other InfoPower components, TwwTable adds important
new functionality. A new Filter property has been added to sup-
port the ability to filter tables (explained below). A new
wwFindKey method has also been added to permit optimal
searching against SQL tables. This new method replaces Delphi’s
FindKey method that is slow when used against large remote
data sets. Finally a new Pack method lets you remove dead space
from Paradox and dBASE tables.
Access to BDE Filters
By default, Delphi lets you use ranges and queries to select a sub-
set of a table. The Borland Database Engine (BDE) also supports
the concept of filters. Unlike ranges, filters are not restricted to
indexed fields. A filter offers the flexibility of a query because a
filter lets you use an expression to specify a criteria for any or all
the fields in a table. A filter also provides you with an editable
result set, which may not always be possible with a query.
Delphi INFORMANT ▲ 45

New and Used

A TwwDBGrid component with customized titles and a combo box.
Delphi lets you use filters, but only if you are willing to do some
engine-level programming. To implement filters in Delphi, you
must program complex data structures and make BDE calls. If the
idea of using pointers scares you, you’re better off using the filter-
ing capability in InfoPower. InfoPower makes using filters a breeze.

To create a filter, simply use the TwwTable component’s Filter prop-
erty and FilterActivate method. The Filter property is a TStringList
so use the Add method to assign criteria to the filter. Valid criteria
statements can contain relational operators (< , > , <= , >= , = ,<>)
and the AND/OR logical operators. After specifying the filter, call
FilterActivate to apply the criteria against your table. The following
Object Pascal code illustrates how to create a filter that shows
orders that have amounts exceeding 100 dollars:

procedure TForm1.Button1Click(Sender: TObject);
begin

with TwwOrdersTable1 do
begin

Filter.Clear;
Filter.Add('Amount > 100');
FilterActivate;

end;
end;

The source table doesn’t need to be indexed to use a filter. If an
index does exist, however, you can select it for any purpose, such
as to change the display order of the records. The availability of
an index in the result set is one of the key advantages that filters
have over queries.

Filters also have some disadvantages. They tend to be slower than
ranges because each record is evaluated as it is seen. Also, when you
apply a filter on a table, the RecordCount property reflects the total
number of records in the table, not the number of records matching
the filter. To obtain an accurate record count, you can use Object
Pascal to iterate through the result set and count the records.
New QBE Component
Besides TwwTable and TwwQuery, InfoPower offers a third
data access component: TwwQBE. This useful component
enables you to use Paradox-style query-by-example (QBE)
statements to query tables. This is a welcome addition to
Paradox for Windows developers who are familiar with QBE
and want to make the transition to Delphi. Not only does
TwwQBE let you run existing QBE statements unmodified, it
also permits the creation of some queries not possible when
you use SQL syntax against local tables (i.e. the dreaded
“Capability Not Supported” message).

To use the TwwQBE component, Woll2Woll recommends
you create the QBE statement from the Database Desktop or
Paradox for Windows, then load it into the QBE property of
the component. You can also use the Add method to build
the QBE statement at run-time since the QBE property is a
TStringList. Finally, the AnswerTable and AuxiliaryTables
properties are available so you can define the result set and
any auxiliary tables arising from INSERT, DELETE, or
CHANGETO operations.
AUGUST 1995
Sophisticated Database Grid
The centerpiece of InfoPower’s enhanced data controls collection
is the TwwDBGrid component. This component extends upon
Delphi’s built-in TDBGrid by adding significant new functionali-
ty, such as the ability to attach combo-boxes, checkboxes, and
memos to the grid. Fields from multiple tables in a one-to-one
relationship can be displayed on the same row without coding. In
addition, you can define fixed, non-scrollable columns in the grid
so they always appear as the user pans through the fields. You can
also alter the default appearance of the grid, including word-wrap-
ping the titles and changing individual cell colors. Another impor-
tant, but subtle, improvement is the accurate display of the vertical
scrollbar’s thumb when scrolling through Paradox or dBASE
tables. Delphi’s TDBGrid leaves the thumb position “stuck” in the
center of the scrollbar. Many of InfoPower’s customers will be pur-
chasing the software just to obtain this component.
TwwDBGrid inherits from TDBGrid, so it works just like the
built-in grid. To use it, you assign a TwwDataSource to the grid’s
DataSource property. In turn, the TwwDataSource component’s
DataSet property must refer to a TwwTable, TwwQuery, or
TwwQBE. The grid has several properties and events that you
program to alter its behavior and appearance.
Enhanced CheckBoxes, Combo-boxes, etc.
InfoPower makes it convenient to display a field in the grid as a
checkbox, combo-box, or lookup combo. Each field in a
TwwDBGrid has a Control Type setting. You can access this set-
ting from the Select Fields dialog box. This dialog box appears
when you click on the grid’s Selected property or the DataSet’s
ControlType property. The field’s control type determines the
appearance of its cell. This can be the default edit box, a checkbox,
or one of InfoPower’s several combo-box or lookup components.
If what you want is an edit box or checkbox, you set the control
type to Field or CheckBox, respectively, and you’re finished.

To display a combo-box or lookup, you must first bind one of
InfoPower’s combo-box or lookup components to the field, then
leave it on the form with its Visible property set to False. Next
you use the Select Fields dialog box to set the field’s ControlType
property to Combo or LookupCombo, depending on the compo-
nent type you want to use. After you do this, a second drop-
down list appears showing the names of all the components that
Delphi INFORMANT ▲ 46

New and Used

Setting up a linked field.
can be attached to the cell. When you choose one, the grid will
display it each time the cell has focus.

Two InfoPower components you can use with the grid are
TwwDBCombobox and TwwDBLookupCombo. TwwDBCombobox
replaces Delphi’s built-in TDBCombobox component. Like the
TwwDBLookupCombo, this control can be used inside the grid or
by itself. Woll2Woll found keystrokes — such as F, J, e,
and SF — didn’t function as expected when using the
regular TDBCombobox with the InfoPower grid. You should use
this replacement component with TwwDBGrid in place of
TDBCombobox whenever you need to use a combo-box with a
fixed list of choices. Aside from this adjustment, nothing else is
new about TDBCombobox.

TwwDBLookupCombo is an enhanced TDBLookupCombo that
adds several new features. TwwDBLookupCombo lets you select
any number of fields from the lookup table to display. In addi-
tion, you can control their display width and title descriptions.
When the drop-down list is displayed, the user can incremental-
ly search the list by typing into the edit box. It also lets you
determine the alignment of the drop-down list relative to the
component’s edge. Finally, you do not have to fill in the
DataField and DataSource properties to bind the field. The
component can be used without editing an underlying table, so
it is useful in situations other than in the grid.
The Locate Field Value dialog
box enables you to search
the fields of a table for a
specific topic.
Creating Linked Fields
TwwGrid lets you display a linked field from another table by set-
ting properties. To do this with the built-in grid, you would have
to write code in the OnCalcField event to reference the appropri-
ate value from a lookup table, then display it in a calculated field.
InfoPower simplifies this by removing the need to write code.

To display a linked field, you use the Edit Linked Field dialog
box of the TwwTable to select a display field. This dialog box lets
AUGUST 1995
you choose the table used in the one-to-one relationship, the
names of the joined fields, the index used, and the field that is
displayed. When you run the form, any linked fields are auto-
matically shown as read-only fields.
Controlling the Grid’s Appearance
TwwDBGrid offers much more control over the appearance of
the grid than Delphi’s TDBGrid. The FixedCols property lets you
define non-scrollable columns on the grid’s left side. The Ctrl3D
property gives the whole grid a 3-D look instead of only the
titles as TDBGrid permits. The TitleAlignment, TitleColor, and
TitleLines properties let you control the alignment, color, and
number of lines occupied by the titles. When you use the latter
property to create multi-line titles, you embed “~” symbols in
your titles to force the text onto the next line.

TwwDBGrid adds the OnCalcCellColors event to let you set the
appearance of individual cells in the grid. You can use this event
to highlight important fields or to convey status to the end-user.
The following code sample turns the text color of the OnHand
field to clRed if its value falls below 30 items:

procedure TForm1.OnCalcCellColors(Field:TField;
State:TGridDrawState; Highlight:Boolean;
AFont:TFont; ABrush:TBrush);

begin
if Field.FieldName = 'OnHand' then

if Field.Value < 30 then
AFont.Color := clRed;

end;
Searching, Sorting, and Locating
InfoPower contains two controls, TwwKeyCombo and
TwwIncrementalSearch, that let you give the end-user the ability
to “sort” a table and incrementally search for values. The
TwwKeyCombo doesn’t actually sort a table, but lets you change
its display order. This component is a drop-down list that is
populated with the names of all the indexes for a table. When a
selection is made, the table is ordered by the fields in the index.
This mimics the capability of Paradox for Windows’ Table |
Filter | Order By menu command.

The TwwIncrementalSearch component lets the user incremental-
ly search for values in a table. As the user enters a value in the

control’s visible edit box, the
selection is narrowed to the clos-
est record. Internally,
TwwIncrementalSearch searches
the first field in the table’s active
index. This control is best used in
conjunction with TwwKeyCombo
and a data grid to allow the user
to select the index and view the
results of the search.

InfoPower provides two compo-
nents, TwwSearchDialog and
TwwLocateDialog, that prompt the
user when searching for a record.
Delphi INFORMANT ▲ 47

New and Used
TwwSearchDialog combines the features of TwwIncrementalSearch
and TwwKeyCombo in a dialog box so that users can incrementally
search for a record. The dialog box also contains up to two user-
definable buttons that you can program responses to.
TwwLocateDialog displays a dialog box that lets the user search for a
record by entering a value and a field to match it against. The dialog
box contains options to allow case-sensitive, and exact or partial
matches. This component also contains two methods, FindFirst and
FindNext, that let you perform a behind-the-scenes search without
displaying the dialog box at all. Both TwwSearchDialog and
TwwLocateDialog are used by calling their Execute methods.
The wwDBLookupComboDlg
component enables you to search
for a record.
User Defined Combo-boxes
TwwDBComboDlg is one of the more versatile visible components in
the InfoPower collection. This visible control is bound to a field and
works very much like a combo-box, except that you control what
happens when the user clicks the component’s ellipsis (...) button.
InfoPower ships with an example that uses a TwwDBComboDlg
component with a date field. When you click on the ellipsis button,
a calendar is displayed that lets you pick a date and fill in the field.

To program the ellipsis button, you add code to respond to the
TwwDBComboDlg component’s OnCustomDlg event. The fol-
lowing Object Pascal code fragment displays a calendar in
response to this event:

procedure TForm1.wwDBComboDlg1CustomDlg(Sender: TObject);
begin

wwCalendarComboDlg(Sender as TwwDBComboDlg);
end;
This wwDBLookupComboDlg com-
ponent displays a calendar.

InfoPower is a collection of data-aware
Additional Lookup Dialogs
To round off its collection of
lookup components,
InfoPower includes
TwwDBLookupComboDlg and
TwwLookupDialog. These two
components offer functional-
ity similar to
TwwDBLookupCombo
because they let you display
 components that enhance Delphi’s exist-

ing VCL components, including an
enhanced data grid, database filtering,
lookup combo-boxes, expanding memo
dialogs, and incremental search compo-
nents. The package has a well-written
user manual and a comprehensive collec-
tion of sample code. Source code is avail-
able separately.

Woll2Woll Software
1032 Summerplace Drive
San Jose, CA 95122
Phone: (800) WOL2WOL, or
(408) 293-9369

Price: Introductory price US$149 expires
August 31, 1995; source code US$79;
after August 31, US$199, with source
code at US$99 (30-day money-back
guarantee).

Free technical support is provided
via:
CompuServe: 76207,2541
Internet: wol2wol@webcom.com
Fax: (408) 287-9374
Voice: (408) 293-9369
choices from a lookup table. What’s different is they let you
present the lookup table as a searchable grid in a dialog box
instead of a drop-down list. The dialog box can contain an
index selection combo-box and up to two optional command
buttons that you can program responses to when they are
pressed. TwwDBLookupComboDlg is bound to a data field, just
as TwwDBLookupCombo is. When the user clicks on the ellip-
sis button, the dialog box containing the grid appears.

TwwDBLookupDialog displays a similar dialog box, but is not
bound to a data field. It’s a non-visual component just as
Delphi’s common dialog components, so you control it using
code. To display the dialog box, you call the component’s
Execute method. When the user is finished with the dialog
box, you can query the component’s LookupTable property to
determine what record was selected. TwwDBLookupDialog is
very flexible because you can control exactly when the lookup
AUGUST 1995
table is displayed and what
to do with the selected value.
Deployment,
Documentation, and
Sample Code
Registered users are given a
royalty-free license to dis-
tribute executable applica-
tions they build using the
InfoPower components.
Since InfoPower is a VCL
library, there is no need to
distribute additional files
with your application. If you
buy the source code, you can modify it and/or derive your
own components from InfoPower’s basic set. You can then use
these customized components in applications provided you do
not distribute them outside your company.

Woll2Woll’s documentation for InfoPower consists of 115
pages. This user’s manual contains instructions on how to
install the software, descriptions of each component, and use-
ful examples of how to use each one. Since many of the
InfoPower components are inherited from VCL components,
it is important to understand where and why the newer com-
ponent diverges from the pre-defined behavior of its ancestor.
To this end, the section for each component lists any new,
modified, or obsolete properties.

Also in the documentation is a tips and techniques section
that describes how to achieve common functionality. This
information is also available in the on-line help system. Since
the on-line help is integrated into Delphi’s IDE, the reference

is always conveniently available. A
final valuable reference is
InfoPower’s source code that is
available as a separate purchase. If
you are interested in learning about
how InfoPower works, or how to
make direct BDE calls, you should
buy this option.

InfoPower ships with a series of
small Delphi sample programs that
illustrate the features of each com-
ponent. Although installation of the
sample programs is optional, I rec-
ommend running through each one
to get a quick overview of
InfoPower’s capabilities. By study-
ing each example, you can learn
how to use InfoPower most effec-
tively in your application. In fact,
prospective customers can obtain a
demonstration version,
InfoDemo.ZIP, from CompuServe
Delphi INFORMANT ▲ 48

New and Used
(Informant Forum, Library 14) or at Woll2Woll’s World-
Wide Web address (http://www.webcom.com/~wol2wol/).
This demonstration version contains the same examples that
ship with InfoPower.
Conclusion
InfoPower provides capabilities essential to every professional
database developer. The components are complete and well
thought out, significantly enhancing the development process.
The documentation, help system, and sample code serve as a
very good tutorial in helping new users master the product.

Developers who want to build full-featured front-ends for
their database applications should take a serious look at this
product. The quality of the total package rivals or exceeds
many of the more established same-niche VBX products that
I’ve used to develop Visual Basic database applications.
Woll2Woll plans for future versions include many grid
enhancements, such as multi-selection rows, editable fixed
columns and linked fields, and spin edit support. ∆
AUGUST 1995 Delphi INFORMANT ▲ 49

Joseph C. Fung is a principal of Farpoint Systems Corporation, a NY/NJ-based con-
sulting firm specializing in developing traditional and client/server database appli-
cations with Delphi, ObjectPAL, and Visual Basic. He writes for Paradox Informant,
and is the author of Paradox for Windows Essential Power Programming. Mr
Fung is also the architect of ScriptView and AppExpert, two award-winning devel-
opment tools for Paradox. Currently, Mr Fung chairs an advisory board for the
Borland Developer Conference ’95. He can be reached at (201) 656-6561, on
CompuServe at 71121,2331, or via Internet at jfung@panix.com.

TextF i le
Delphi Unleashed: Worth the Wait
“Nuts & Bolts” , continued on page 51
The first books to appear after
the release of a new software
product typically whet readers’
appetites, but leave them
wanting more. Only later do
the major reference works
begin to appear. From Sams
Publishing, Charles Calvert’s
Delphi Unleased is in this sec-
ond category, and well worth
the wait. Unleashed is a large,
satisfying “must read” for
Delphi developers. It is well-
written, detailed, and contains
insights into Delphi that you
will find nowhere else.

While Unleased has some-
thing for nearly everybody,
Parts II and III of this book
will be particularly welcome
for those new to the Pascal
language, or returning to it
after a long absence. Unleashed
spends more than a third of its
900 pages covering the basics
of Object Pascal. These sec-
tions begin with a discussion
of variables and types, contin-
ue into control structures, and
end with a detailed look at
pointers, PChars, and linked
lists. The information con-
tained here will be especially
appreciated by anyone who
has tried to read the practically
indecipherable Object Pascal
Language Reference.

Part IV of Unleashed contains
a serviceable introduction to
using Delphi for database appli-
cations. Here readers learn the
relationship between
DataSource and DataSet com-
ponents, and how to use these
to create forms that provide
access to databases. Included in
this section is a nice, but limit-
ed introduction to client/server
AUGUST 1995
topics. The remainder of
Unleashed covers a wide variety
of topics including OOP
(object-oriented programming),
component creation, exception
handling, and a short primer on
good programming techniques.

In general, there are many
things to like about this book.
Calvert does an excellent job of
explaining the sometimes com-
plex issues, making extensive use
of analogies to assist the reader.
Calvert also shows consideration
for the more advanced reader,
suggesting which parts of the
book may be skipped, skimmed,
or reviewed based on the read-
er’s experience level.

The topics covered in
Unleashed are as varied as the
book is long. Programmers with
experience with Borland Pascal
will appreciate the comparisons
to Delphi, including how their
object models differ. Those who
rely heavily on Windows API
calls will learn how to easily
include them in their Delphi
applications. And those fairly
new to programming will bene-
fit from the detailed explana-
tions of control structures and
type declarations.

Another plus for Unleashed is
its many code examples includ-
ed on the CD-ROM accompa-
nying the book.

In short, Delphi Unleashed
is an important new resource
for Delphi developers. It cov-
ers a wide variety of topics,
and contains valuable insights,
hints, and tips that make it a
great addition to any pro-
grammer’s library.
— Cary Jensen, Ph.D.

Delphi Unleashed by Charles
Calvert, Sams Publishing
(Macmilian Publishing) 201
West 103rd Street, Indianapolis,
IN 46290; (317) 581-3500

ISBN: 0-672-30449-6
Price: US$45.00
930 pages, CD-ROM
Putting it Together with Nuts & Bolts
Experienced programmers look-
ing for a quick jump start into
Delphi will welcome Delphi
Nuts & Bolts for Experienced
Programmers by Gary Cornell
and Troy Strain (Osborne
McGraw-Hill). I looked for-
ward to seeing this title, having
often recommended Cornell’s
earlier books on Visual Basic. In
Nuts & Bolts, Cornell, a mathe-
matics professor, teams up with
Strain, a former testing manag-
er for Visual Basic (VB) at
Microsoft. They assume the
reader has a working knowledge
of programming (in any lan-
guage) that enables them to
skip such topics as how to use
loops and other common con-
structs. They still cover the syn-
tax and the unexpected idiosyn-
crasies, but they don’t waste
pages dwelling on material pro-
grammers already know.

The book offers numerous
short tips. Icons in the margins
classify the tips as being of gen-
eral interest, for VB, or Pascal
programmers. Pointing out how
Delphi differs from VB and
Pascal is especially valuable for
the many programmers coming
to Delphi from one of those
backgrounds. Unfortunately, I
found the typographic presenta-
tion of the tips interrupted the
flow of text. Each tip is preced-
ed by a column-wide dotted
rule and followed by a page-
wide solid rule. The rules create
too much visual separation
between the main-body para-
graphs that precede and follow
the tip. After reading a tip, I
consistently was surprised to
return to the original subject
rather than a whole new topic.

The book begins with the
expected basics: the Delphi
environment, form design,
components, menus, etc. By
concentrating on the big pic-
ture, on easily missed features of
Delphi, and on unexpected
“gotchas”, the early chapters
Delphi INFORMANT ▲ 50

AUGUST 1995

“Nuts & Bolts” (cont. from page 50)

TextFile
provide a wealth of information
very quickly. The authors
devote little space to examples,
but refer readers to Delphi’s
sample programs. Similarly,
they urge readers to consult
Delphi’s Help files for details of
less important component
properties.

The middle chapters cover
basic and advanced aspects of
the Delphi language. I was
pleased by the emphasis on data
structures, including arrays,
string lists, records, pointers,
etc. Objects are covered in a
separate chapter, although per-
haps more briefly than object-
oriented programming (OOP)
newcomers may wish.

The final portion of the
book skims over a variety of
topics. Most of the material is
helpful, and provides a good
starting point for personal
exploration. However, these
chapters seemed less complete
than the earlier sections. It
appeared as if the authors were
working under a page-count
limit or a severe time deadline.
The too-brief chapters include
discussions of error and excep-
tion handling (nine pages), test-
ing and debugging (11), and
working with files (18). Other
short chapters deal with inter-
application communication
(Clipboard, DDE, and OLE),
graphics, and “advanced user-
interface features” (toolbars, sta-
tus bars, common dialog boxes,
MDI forms, drag-and-drop
operations, and help systems). I
suspect that many readers could
benefit from more depth on
these topics.

The biggest disappointment
was the final chapter “A Survey
of Database Features,” that runs
just eight pages. The authors
acknowledge the brevity, but
plead that it would take a book
twice the size of Nuts & Bolts to
explain “any substantial part” of
Delphi’s database programming
power. Perhaps so, but such an
important topic surely deserves
more than eight pages.

If you already know how to
program and want to learn
what’s new in Delphi, Nuts &
Bolts will take you farther, faster
than most other books. This is
especially true if your back-
ground is in VB or Pascal. The
quality of what’s provided is
excellent, but the brevity leaves
you wishing for even more.
— Larry Clark

Delphi Nuts & Bolts for
Experienced Programmers by
Gary Cornell and Troy Strain,
Osborne McGraw-Hill, 2600
Tenth Street, Berkeley, CA
94710; (800) 227-0900.
ISBN: 0-07-882136-3
Price: US$24.95,
307 pages
A Delphi Adventure in Three Easy Parts

Delphi Programming EXplorer
by Jeff Duntemann, Jim
Mischel, and Don Taylor is a
great way to learn Delphi pro-
gramming. At the same time,
it’s a lot of fun to read. Jeff
Duntemann is an excellent
author, unsurpassed at explain-
ing programming subjects in
an easy-to-follow manner. His
editorials are the first thing I
read each month when PC
Techniques magazine arrives.
Mischel and Taylor also write
for PC Techniques. When I
learned they had teamed up to
write EXplorer, I ordered a
copy, sight unseen. I wasn’t dis-
appointed — it’s a winner.

EXplorer is written in three
parts, and includes a diskette of
source code and utilities. In Part
1, Duntemann and Mischel
alternate writing chapters. They
use a “hands-on” approach that
produces results quickly.
Chapters by Mischel guide you
through the mechanics of using
Delphi to create simple, inter-
esting applications. In alternat-
ing chapters, Duntemann
reviews the theory behind the
code. Both authors use personal
anecdotes to tie the code and
discussions to the real world.
After several chapters, you’ll
have enough experience and
confidence to experiment with
Delphi on your own.

Duntemann and Mischel
continue their team approach
in Part 2. They don’t hold your
hand as much, and the pace
quickens. The theory and prac-
tice start to mix together, and
there are some examples that
are not part of complete pro-
jects. The subject matter is
more advanced: objects, files,
printing, graphics, and the
beginnings of database pro-
gramming. The examples
include a file viewing utility, a
mortgage calculator, a graphics
toy like the “Spirograph”, and
several simple databases. This
section has a few editing errors,
and some printed listings have
bugs that have been corrected
on the diskette, but they are
minor problems. By the end of
the section you’re ready to start
working on significant projects.

Part 3 of EXplorer is where
the fun really starts. In “Ace
Breakpoint’s Database
Adventure” Don Taylor pre-
sents a database design study.
In the form of a hard-boiled
detective novel! Ace is an ex-
private investigator turned
programmer, learning Delphi
while trying to become sensi-
tive and politically correct (a
sort of Sam Spade for the
90s). As you follow Ace in his
struggles to deliver a demo to
an important customer, defeat
his scornful competitor, and
regain his lost love, you’ll
actually learn important steps
in the Rapid Application
Design (RAD) process. You’ll
write a sophisticated applica-
tion using Delphi database
components. You’ll also learn
how to add help to a project
using the supplied HelpGen
utility, and find out what hap-
pens in Ace’s love life.

The book includes an
appendix on Delphi for
Visual Basic users. It contains
a brief review of the differ-
ences between Delphi and
Visual Basic, instructions for
installing and using an evalu-
ation version of EarthTrek’s
Delphi Conversion Assistant,
and a short example of the
conversion process.

With Delphi Programming
EXplorer, Duntemann,
Mischel, and Taylor have cre-
ated a rare combination of
valuable content and refresh-
ing presentation. Palatable for
experienced developers as well
as newcomers — amusing
without being frivolous — it’s
a great way to start your
adventures in Delphi. Sign up
for the trip. And be prepared
for a good time!
— Tim Feldman

Delphi Programming EXplorer
by Jeff Duntemann, Jim
Mischel, and Don Taylor,
Coriolis Group Books, 7339
East Acoma Drive, Suite 7,
Scottsdale, AZ 85260; (800)
410-0192, or (602) 483-0192.
ISBN: 1-883577-25-X
Price: US$39.99
627 pages, diskette
Delphi INFORMANT ▲ 51

	Table of Contents
	Editorial
	Delphi Tools
	MKS’ Source Integrity Released
	Access Btrieve Data with Titan for Delphi
	Delphi Component Creates Paradox for Windows Reports
	Syware Announces Dr. DeeBee Tools
	MicroHelp Releases SpellPro 2 & Thesaurus
	ProtoView Releases DataTable

	Newsline
	Visual Components Made Delphi Ready
	Borland Conference Europe 96: A Call for Papers
	Borland Previews Delphi32
	Delphi Seminars Now Available Worldwide
	Informant Forum Opens on CompuServe
	ICG Publishes New Delphi Power Tools Catalog; Readies Paradox and C++

	Creating MDI Apps
	Creating MDI Applications
	Setting Up MDI Parent and Child Forms
	Referencing MDI Child Windows
	Useful Properties for MDI Window Management
	Incorporating MDI Window Methods
	Arranging Icons
	Cascading MDI Windows
	Closing the Current Child Window
	Next and Previous
	Tiling MDI Children
	Conclusion

	A Topical Search
	Authoring vs. Integration
	What’s So Hyper about Hypertext?
	What Is Context-Sensitivity?
	Understanding the Data Type Trap
	The Help Project File
	Hooking Delphi Components to Help Topics
	Planning a HelpContext ID Scheme
	Properties and Methods for Accessing Windows Help
	Some Practical Techniques
	Sidebar - More Information about

	Conclusion

	Initialization Rites
	What Are .INI Files?
	How Delphi Handles .INI Files
	Reading, Writing, and ’Rithmetic
	Sample Application
	Conclusion
	Listing One: INI_APP.PAS

	Strings: Part I
	A String Is Just a Form of Array
	Null-terminated Strings
	Conclusion
	Listing Two — EASYSTR

	Data Validation: Part I
	Introduction to Data Validation
	Field Validation with Standard Controls
	An Example of Code-Free Validation
	Validating Standard Controls Using Code
	Conclusion

	Show Your Colors
	Writing to a Form’s Canvas
	The Color Triangle
	Configuring the Color Triangle
	Getting Around a Circular Reference
	Compiler Directives
	Conclusion
	Listing Three: Coloru.PAS

	Delphi on the Web
	Web Pages
	Official Web Pages
	Commercial Sites
	Non-commercial Sites
	General Pascal Pages
	User Group Sites
	Discussion Forums and Newsgroups

	At Your Fingertips
	How can I create “hot regions” on my form?
	How can I create a simple glossary system for a memo field?
	How can I easily copy a record from one table to another?

	InfoPower
	Installing InfoPower
	Enhanced DataSet and DataSource Controls
	Access to BDE Filters
	New QBE Component
	Sophisticated Database Grid
	Enhanced CheckBoxes, Combo-boxes, etc.
	Creating Linked Fields
	Controlling the Grid’s Appearance
	Searching, Sorting, and Locating
	User Defined Combo-boxes Since InfoPower is a VCL The wwDBLookupComboDlg
	Additional Lookup Dialogs
	Deployment, Documentation, and Sample Code
	Conclusion

	TextFile
	Delphi Unleashed: Worth the Wait
	Putting it Together with Nuts & Bolts
	A Delphi Adventure in Three Easy Parts

